ZHCSKN1B November   2019  – May 2021 DRV8899-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 引脚配置和功能
    1.     引脚功能
  6. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议的操作条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 SPI 时序要求
    7. 6.7 分度器时序要求
    8. 6.8 典型特性
  7. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  步进电机驱动器电流额定值
        1. 7.3.1.1 峰值电流额定值
        2. 7.3.1.2 均方根电流额定值
        3. 7.3.1.3 满量程电流额定值
      2. 7.3.2  PWM 电机驱动器
      3. 7.3.3  微步进分度器
      4. 7.3.4  通过 MCU DAC 控制 VREF
      5. 7.3.5  电流调节
      6. 7.3.6  衰减模式
        1. 7.3.6.1 上升和下降电流阶段的慢速衰减
        2. 7.3.6.2 上升电流阶段为慢速衰减,下降电流阶段为混合衰减
        3. 7.3.6.3 模式 4:用于上升电流的慢速衰减,用于下降电流的快速衰减
        4. 7.3.6.4 上升和下降电流阶段的混合衰减
        5. 7.3.6.5 智能调优动态衰减
        6. 7.3.6.6 智能调优纹波控制
      7. 7.3.7  消隐时间
      8. 7.3.8  电荷泵
      9. 7.3.9  线性稳压器
      10. 7.3.10 逻辑电平引脚图
        1. 7.3.10.1 nFAULT 引脚
      11. 7.3.11 保护电路
        1. 7.3.11.1 VM 欠压锁定 (UVLO)
        2. 7.3.11.2 VCP 欠压锁定 (CPUV)
        3. 7.3.11.3 过流保护 (OCP)
          1. 7.3.11.3.1 锁存关断 (OCP_MODE = 0b)
          2. 7.3.11.3.2 自动重试 (OCP_MODE = 1b)
        4. 7.3.11.4 开路负载检测 (OL)
        5. 7.3.11.5 热关断 (OTSD)
          1. 7.3.11.5.1 锁存关断 (OTSD_MODE = 0b)
          2. 7.3.11.5.2 自动恢复 (OTSD_MODE = 1b)
        6. 7.3.11.6 过热警告 (OTW)
        7. 7.3.11.7 低温警告 (UTW)
        8.       52
    4. 7.4 器件功能模式
      1. 7.4.1 睡眠模式 (nSLEEP = 0)
      2. 7.4.2 禁用模式(nSLEEP = 1,DRVOFF = 1)
      3. 7.4.3 工作模式(nSLEEP = 1,DRVOFF = 0)
      4. 7.4.4 nSLEEP 复位脉冲
      5.      58
    5. 7.5 编程
      1. 7.5.1 串行外设接口 (SPI) 通信
        1. 7.5.1.1 SPI 格式
        2. 7.5.1.2 用于单个从器件的 SPI
        3. 7.5.1.3 用于多个从器件的并行配置 SPI
        4. 7.5.1.4 用于多个从器件的菊花链配置 SPI
    6. 7.6 寄存器映射
  8. 应用和实施
    1. 8.1 应用信息
    2. 8.2 典型应用
      1. 8.2.1 设计要求
      2. 8.2.2 详细设计过程
        1. 8.2.2.1 步进电机转速
        2. 8.2.2.2 电流调节
        3. 8.2.2.3 衰减模式
      3. 8.2.3 应用曲线
      4. 8.2.4 热应用
        1. 8.2.4.1 功率损耗
          1. 8.2.4.1.1 导通损耗
          2. 8.2.4.1.2 开关损耗
          3. 8.2.4.1.3 由于静态电流造成的功率损耗
          4. 8.2.4.1.4 总功率损耗
        2. 8.2.4.2 PCB 类型
        3. 8.2.4.3 HTSSOP 封装的热参数
        4. 8.2.4.4 VQFN 封装的热参数
        5. 8.2.4.5 器件结温估算
  9. 电源建议
    1. 9.1 大容量电容
  10. 10布局
    1. 10.1 布局指南
    2. 10.2 布局示例
  11. 11器件和文档支持
    1. 11.1 文档支持
      1. 11.1.1 相关文档
    2. 11.2 接收文档更新通知
    3. 11.3 支持资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 术语表
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

智能调优动态衰减

与传统的固定关断时间电流调节方案相比,智能调优电流调节方案是一种先进的电流调节控制方法。智能调优电流调节方案有助于步进电机驱动器根据下列工作因素调整衰减方案:

  • 电机绕组电阻和电感
  • 电机老化效应
  • 电机动态转速和负载
  • 电机电源电压变化
  • 步进上升和下降时的电机反电动势差
  • 步进转换
  • 低电流与高电流 dI/dt

该器件提供两种不同的智能调优电流调节模式,即智能调优动态衰减和智能调优纹波控制。

GUID-DE165502-AC5E-4A48-BC85-C908A877224A-low.gif图 7-12 智能调优动态衰减模式

智能调优动态衰减通过在慢速、混合和快速衰减之间自动配置衰减模式,大大简化了衰减模式选择。在混合衰减中,智能调优将动态地调整总混合衰减时间中的快速衰减百分比。此功能通过自动确定最佳衰减设置来消除电机调谐,从而产生最低的电机纹波。

衰减模式设置经由每个 PWM 周期进行迭代优化。如果电机电流超过目标跳变电平,则衰减模式在下一个周期变得更加激进(增加快速衰减百分比)以防止调节损失。如果必须长时间驱动才能达到目标跳变电平,则衰减模式在下一个周期变得不那么激进(去除快速衰减百分比),从而以更少的纹波实现更高效地运行。在步进下降时,智能调优动态衰减会自动切换到快速衰减,以便快速进入下一步进。

对于需要实现最小电流纹波但希望在电流调节方案中保持固定频率的应用,智能调优动态衰减是最佳选择。