ZHCSMH6 February   2021 DS160PR421

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 DC Electrical Characteristics
    6. 6.6 High Speed Electrical Characteristics
    7. 6.7 SMBUS/I2C Timing Charateristics
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Linear Equalization
      2. 7.3.2 Flat Gain
      3. 7.3.3 Receiver Detect State Machine
    4. 7.4 Device Functional Modes
      1. 7.4.1 Active PCIe Mode
      2. 7.4.2 Active Buffer Mode
      3. 7.4.3 Standby Mode
    5. 7.5 Programming
      1. 7.5.1 Control and Configuration Interface
        1. 7.5.1.1 Pin Mode
          1. 7.5.1.1.1 Four-Level Control Inputs
        2. 7.5.1.2 SMBUS/I2C Register Control Interface
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 PCIe x8 Lane Switching
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Pin-to-pin Passive versus Redriver Option
        4. 8.2.1.4 Application Curves
      2. 8.2.2 DisplayPort Application
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
  11. 11Layout Example
  12. 12Device and Documentation Support
    1. 12.1 接收文档更新通知
    2. 12.2 支持资源
    3. 12.3 Trademarks
    4. 12.4 静电放电警告
    5. 12.5 术语表
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Power Supply Recommendations

Follow these general guidelines when designing the power supply:

  1. The power supply should be designed to provide the operating conditions outlined in the recommended operating conditions section in terms of DC voltage, AC noise, and start-up ramp time.
  2. The DS160PR421 does not require any special power supply filtering, such as ferrite beads, provided that the recommended operating conditions are met. Only standard supply decoupling is required. Typical supply decoupling consists of a 0.1 µF capacitor per VCC pin, one 1.0 µF bulk capacitor per device, and one 10 µF bulk capacitor per power bus that delivers power to one or more devices. The local decoupling (0.1 µF) capacitors must be connected as close to the VCC pins as possible and with minimal path to the device ground pad.
  3. The DS160PR421 voltage regulator output pins require decoupling caps of 0.1 µF near each pins. The regulator is only for internal use. Do not use to provide power to any external component.