ZHCSEW6G may   2013  – november 2020 DS90UB913A-Q1

PRODUCTION DATA  

  1.   1
  2. 1特性
  3. 2应用
  4. 3说明
  5. 4Revision History
  6.   Device Comparison Table
  7. 5Pin Configuration and Functions
    1.     Pin Functions: DS90UB913A-Q1 Serializer
  8. 6Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Recommended Serializer Timing For PCLK
    7. 6.7  AC Timing Specifications (SCL, SDA) - I2C-Compatible
    8. 6.8  Bidirectional Control Bus DC Timing Specifications (SCL, SDA) - I2C-Compatible
    9. 6.9  Timing Diagrams
    10. 6.10 Serializer Switching Characteristics
    11. 6.11 Typical Characteristics
  9. 7Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Serial Frame Format
      2. 7.3.2 Line Rate Calculations for the DS90UB913A/914A
      3. 7.3.3 Error Detection
      4. 7.3.4 Synchronizing Multiple Cameras
      5. 7.3.5 General Purpose I/O (GPIO) Descriptions
      6. 7.3.6 LVCMOS VDDIO Option
      7. 7.3.7 Pixel Clock Edge Select (TRFB / RRFB)
      8. 7.3.8 Power Down
    4. 7.4 Device Functional Modes
      1. 7.4.1 DS90UB913A/914A Operation with External Oscillator as Reference Clock
      2. 7.4.2 DS90UB913A/914A Operation with Pixel Clock from Imager as Reference Clock
      3. 7.4.3 MODE Pin on Serializer
      4. 7.4.4 Internal Oscillator
      5. 7.4.5 Built In Self Test
      6. 7.4.6 BIST Configuration and Status
      7. 7.4.7 Sample BIST Sequence
    5. 7.5 Programming
      1. 7.5.1 Programmable Controller
      2. 7.5.2 Description of Bidirectional Control Bus and I2C Modes
      3. 7.5.3 I2C Pass-Through
      4. 7.5.4 Slave Clock Stretching
      5. 7.5.5 ID[x] Address Decoder on the Serializer
      6. 7.5.6 Multiple Device Addressing
    6. 7.6 Register Maps
  10.   Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Power Over Coax
      2. 8.1.2 Power-Up Requirements and PDB Pin
      3. 8.1.3 AC Coupling
      4. 8.1.4 Transmission Media
    2. 8.2 Typical Applications
      1. 8.2.1 Coax Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 STP Application
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
  11.   Power Supply Recommendations
  12. 8Layout
    1. 8.1 Layout Guidelines
      1. 8.1.1 Interconnect Guidelines
    2. 8.2 Layout Example
  13. 9Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
  14.   Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Synchronizing Multiple Cameras

For applications requiring multiple cameras for frame-synchronization, it is recommended to utilize the General Purpose Input/Output (GPIO) pins to transmit control signals to synchronize multiple cameras together. To synchronize the cameras properly, the system controller needs to provide a field sync output (such as a vertical or frame sync signal) and the cameras must be set to accept an auxiliary sync input. The vertical synchronize signal corresponds to the start and end of a frame and the start and end of a field. Note this form of synchronization timing relationship has a non-deterministic latency. After the control data is reconstructed from the bidirectional control channel, there will be a time variation of the GPIO signals arriving at the different target devices (between the parallel links). The maximum latency delta (t1) of the GPIO data transmitted across multiple links is 25 µs.

Note:

The user must verify that the timing variations between the different links are within their system and timing specifications.

See Figure 7-1 for an example of this function.

The maximum time (t1) between the rising edge of GPIO (that is, sync signal) to the time the signal arrives at Camera A and Camera B is 25 µs.

GUID-73D56A5B-3842-4771-8BDB-CB57581DAFC8-low.gifFigure 7-1 Synchronizing Multiple Cameras
GUID-F3CD50AC-260B-4EC5-A0EF-5ACB282B719F-low.gifFigure 7-2 GPIO Delta Latency