SBOS501F January   2010  – February 2015 INA128-HT , INA129-HT

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Simplified Schematic
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information: INA128-HT
    5. 7.5 Electrical Characteristics: INA128-HT
    6. 7.6 Electrical Characteristics: INA129-HT
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
      1. 8.4.1 Noise Performance
      2. 8.4.2 Input Common-Mode Range
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Setting the Gain
        2. 9.2.2.2 Dynamic Performance
        3. 9.2.2.3 Offset Trimming
        4. 9.2.2.4 Input Bias Current Return Path
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Low Voltage Operation
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
    2. 12.2 Related Links
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Volttage Supply ±18 V
Analog input ±40
Current Output short-circuit (to ground) Continuous
Operating temperature HKJ, HKQ, KGD and JD packages –55 210 °C
D package –55 175
Storage temperature, Tstg HKJ, HKQ, KGD and JD packages –55 210 °C
D package –55 175
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
A. INA218-HT (D, HKJ, or JDJ Package)
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±50
B. INA129-HT (HKQ Package)
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±4000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
V power supply ±2.25 ±15 ±18 V
Input common-mode voltage range for VO = 0 V - 2 V V + –2 V
TA operating temperature INA128-HT –55 175 °C
TA operating temperature INA129-HT –55 210 °C

7.4 Thermal Information: INA128-HT

THERMAL METRIC(1) INA128-HT UNIT
D [SOIC]
8 PINS
RθJA Junction-to-ambient thermal resistance 110 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 57
RθJB Junction-to-board thermal resistance 54
ψJT Junction-to-top characterization parameter 11
ψJB Junction-to-board characterization parameter 53
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics: INA128-HT

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST
CONDITIONS
TA = –55°C to +125°C TA = 175°C(1) UNIT
MIN TYP MAX MIN TYP MAX
INPUT
OFFSET VOLTAGE, RTI
Initial TA = 25°C ±25
±100/G
±125
±1000/G
µV
vs temperature TA = TMIN to TMAX ±0.2
±5/G
±1
±20/G
±3.5
±80/G
µV/°C
vs power supply VS = ±2.25 V to
±18 V
±2
±200/G
±5
±500/G
µV/V
Long-term stability ±1 ±3/G ±1 ±3/G µV/mo
Impedance, differential 1010 || 2 1010 || 2 Ω || pF
Common mode 1011||9 1011||9 Ω || pF
Common mode voltage range(2) VO = 0 V (V+) − 2 (V+) − 1.4 (V+) − 2 (V+) − 1.4 V
(V−) + 2 (V−) + 1.7 (V−) + 2 (V−) + 1.7 V
Safe input voltage ±40 ±40 V
Common-mode rejection VCM = ±13 V,
ΔRS = 1 kΩ
G = 1 58 86 58 75 dB
G = 10 78 106 78 85
G = 100 99 125 99 110
G = 1000 113 130 113 120
CURRENT
Bias current ±2 ±10 ±45 nA
vs temperature ±30 ±550 pA/°C
Offset Current ±1 ±10 ±45 nA
vs temperature ±30 ±550 pA/°C
NOISE
Noise voltage, RTI G = 1000,
RS = 0 Ω
f = 10 Hz 10 10 nV/√Hz
f = 100 Hz 8 8 nV/√Hz
f = 1 kHz 8 8 nV/√Hz
fB = 0.1 Hz to 10 Hz 0.2 0.8 µVPP
Noise current
f = 10 Hz 0.9 pA/√Hz
f = 1 kHz 0.3 pA/√Hz
fB = 0.1 Hz to 10 Hz 30 pAPP
GAIN
Gain equation 1 +
(50 kΩ/RG)
1 +
(50 kΩ/RG)
V/V
Range of gain 1 10000 1 10000 V/V
Gain error G = 1 ±0.01 ±0.1 ±0.1% ±0.5%
G = 10 ±0.02 ±0.5 ±0.5% ±1%
G = 100 ±0.05 ±0.7 ±0.7% ±1.5%
G = 1000 ±0.5 ±2.5 ±2% ±4%
Gain vs temperature(3) G = 1 ±1 ±10 ±75 ppm/°C
50-kΩ resistance(3)(4) ±25 ±100 ±75 ppm/°C
Nonlinearity VO = ±13.6 V,
G = 1
±0.0001 ±0.001 ±0.008 % of FSR
G = 10 ±0.0003 ±0.002 ±0.01
G = 100 ±0.0005 ±0.002 ±0.01
G = 1000 ±0.001 See (5) ±0.6 See (5)
OUTPUT
Voltage Positive RL = 10 kΩ (V+) − 1.4 (V+) − 0.9 (V+) − 1.4 (V+) − 0.9 V
Negative RL = 10 kΩ (V−) + 1.4 (V−) + 0.8 (V−) + 1.4 (V−) + 0.8
Load capacitance stability 1000 1000 pF
Short-circuit current +6/−15 +6/−15 mA
FREQUENCY RESPONSE
Bandwidth, −3 dB G = 1 1300 1100 kHz
G = 10 700 700
G = 100 200 190
G = 1000 20 17.5
Slew rate VO = ±10 V,
G = 10
4 4 V/µs
Settling time, 0.01% G = 1 7 7 µs
G = 10 7 7
G = 100 9 9
G = 1000 80 80
Overload recovery 50% overdrive 4 4 µs
POWER SUPPLY
Voltage range ±2.25 ±15 ±18 ±2.25 ±15 ±18 V
Current, total VIN = 0 V ±0.7 ±1 ±1 mA
TEMPERATURE RANGE
Specification −55 +125 175 °C
Operating −55 +125 175 °C
(1) Minimum and maximum parameters are characterized for operation at TA = 175°C, but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance.
(2) Input common-mode range varies with output voltage — see typical curves.
(3) Specified by wafer test.
(4) Temperature coefficient of the 50-kΩ term in the gain equation.
(5) Nonlinearity measurements in G = 1000 are dominated by noise. Typical nonlinearity is ±0.001%.

7.6 Electrical Characteristics: INA129-HT

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST
CONDITIONS
TA = –55°C to +125°C TA = 210°C(1) UNIT
MIN TYP MAX MIN TYP MAX
INPUT
OFFSET VOLTAGE, RTI
Initial TA = 25°C ±25
±100/G
±125
±1000/G
µV
vs temperature TA = TMIN to TMAX ±0.2
±5/G
±1
±20/G
±1
±850/G
µV/°C
vs power supply VS = ±2.25 V to
±18 V
±0.2
±20/G
±2
±200/G
±20
±1000/G
µV/V
Long-term stability ±1 ±3/G ±1 ±3/G µV/mo
Impedance, differential 1010 || 2 1010 || 2 Ω || pF
Common mode 1011||9 1011||9 Ω || pF
Common mode voltage range(2) VO = 0 V (V+) − 2 (V+) − 1.4 (V+) − 2 (V+) − 1.4 V
(V−) + 2 (V−) + 1.7 (V−) + 2 (V−) + 1.7 V
Safe input voltage ±40 ±40 V
Common-mode rejection VCM = ±13 V,
ΔRS = 1 kΩ
G = 1 58 86 53 dB
G = 10 78 106 69
G = 100 99 125 89
G = 1000 113 130 95
CURRENT
Bias current ±2 ±10 ±50 nA
vs temperature ±30 ±600 pA/°C
Offset Current ±1 ±10 ±50 nA
vs temperature ±30 ±600 pA/°C
NOISE
Noise voltage, RTI G = 1000,
RS = 0 Ω
f = 10 Hz 10 25 nV/√Hz
f = 100 Hz 8 20 nV/√Hz
f = 1 kHz 8 20 nV/√Hz
fB = 0.1 Hz to 10 Hz 0.2 2 µVPP
Noise current
f = 10 Hz 0.9 pA/√Hz
f = 1 kHz 0.3 pA/√Hz
fB = 0.1 Hz to 10 Hz 30 pAPP
GAIN
Gain equation 1 +
(49.4 kΩ/RG)
1 +
(49.4 kΩ/RG)
V/V
Range of gain 1 10000 1 10000 V/V
Gain error G = 1 ±0.01% ±0.1% ±1.1%
G = 10 ±0.02% ±0.5% ±2.6%
G = 100 ±0.05% ±0.7% ±13.5%
G = 1000 ±0.5% ±2.5% ±65.5%
Gain vs temperature(3) G = 1 ±1 ±10 ±100 ppm/°C
49.4-kΩ resistance(3)(4) ±25 ±100 ±100 ppm/°C
Nonlinearity VO = ±13.6 V,
G = 1
±0.0001 ±0.001 ±0.1 % of FSR
G = 10 ±0.0003 ±0.002 ±0.2
G = 100 ±0.0005 ±0.002 ±0.7
G = 1000 ±0.001 See (5) ±2.4 See (5)
OUTPUT
Voltage Positive RL = 10kΩ (V+) − 1.4 (V+) − 0.9 (V+) − 1.4 (V+) − 0.9 V
Negative RL = 10kΩ (V−) + 1.4 (V−) + 0.8 (V−) + 1.4 (V−) + 0.8
Load capacitance stability 1000 1000 pF
Short-curcuit current +6/−15 +12/−5 mA
FREQUENCY RESPONSE
Bandwidth, −3 dB G = 1 1300 850 kHz
G = 10 700 400
G = 100 200 50
G = 1000 20 7.5
Slew rate VO = ±10 V,
G = 10
4 4 V/µs
Settling time, 0.01% G = 1 7 10 µs
G = 10 7 10
G = 100 9 30
G = 1000 80 150
Overload recovery 50% overdrive 4 4 µs
POWER SUPPLY
Voltage range ±2.25 ±15 ±18 ±2.25 ±15 ±18 V
Current, total VIN = 0 V ±0.7 ±1 ±2 mA
TEMPERATURE RANGE
Specification −55 +125 210 °C
Operating −55 +125 210 °C
(1) Minimum and maximum parameters are characterized for operation at TA = 210°C, but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance.
(2) Input common-mode range varies with output voltage — see typical curves.
(3) Specified by wafer test.
(4) Temperature coefficient of the 49.4-kΩ term in the gain equation.
(5) Nonlinearity measurements in G = 1000 are dominated by noise. Typical nonlinearity is ±0.001%.
INA128-HT INA129-HT op_life1_bos501.gif
1. See the data sheet for absolute maximum and minimum recommended operating conditions.
2. The predicted operating lifetime vs. junction temperature is based on reliability modeling using electromigration as the dominant failure mechanism affecting device wearout for the specific device process and design characterisitics.
3. Wirebond lifetime is only applicable for D package.
Figure 1. INA128HD, INA129SKGD1, and INA129SKGD2 Operating Life Derating Chart

7.7 Typical Characteristics

At TA = 25°C, VS = ±15 V, unless otherwise noted.
INA128-HT INA129-HT gain-freq_bos501.gif
Figure 2. Gain vs Frequency
INA128-HT INA129-HT pwrsupp-freq_bos501.gif
Figure 4. Positive Power-Supply Rejection vs Frequency
INA128-HT INA129-HT cmi-vo15_bos501.gif
VS = ±15 V
Figure 6. Input Common-Mode Range vs Output Voltage
INA128-HT INA129-HT inrefvn-freq_bos501.gif
Figure 8. Input-Referred Noise vs Frequency
INA128-HT INA129-HT iq_temp1_bos501.gif
Figure 10. Quiescent Current and Slew Rate vs Temperature
INA128-HT INA129-HT invoff_time_bos501.gif
Figure 12. Input Offset Voltage Warm-Up
INA128-HT INA129-HT vswing_io_bos501.gif
Figure 14. Output Voltage Swing vs Output Current
INA128-HT INA129-HT isc_temp1_bos501.gif
Figure 16. Short-Circuit Output Current vs Temperature
INA128-HT INA129-HT thd_freq_bos501.gif
Figure 18. Total Harmonic Distortion + Noise vs Frequency
INA128-HT INA129-HT moderej-freq_bos501.gif
Figure 3. Common-Mode Rejection vs Frequency
INA128-HT INA129-HT negpwrsupp-freq_bos501.gif
Figure 5. Negative Power-Supply Rejection vs Frequency
INA128-HT INA129-HT cmi-vo5_bos501.gif
VS = ±5 V, ±2.5 V
Figure 7. Input Common-Mode Range vs Output Voltage
INA128-HT INA129-HT tset_gain_bos501.gif
Figure 9. Settling Time vs Gain
INA128-HT INA129-HT ovin_bos501.gif
Figure 11. Input Overvoltage Voltage-to-Current Characteristics
INA128-HT INA129-HT inib_temp1_bos501.gif
Figure 13. Input Bias Current vs Temperature
INA128-HT INA129-HT vswing_vsupp_bos501.gif
Figure 15. Output Voltage Swing vs Power Supply Voltage
INA128-HT INA129-HT maxvo_freq_bos501.gif
Figure 17. Maximum Output Voltage vs Frequency