ZHCSE92 September   2015 INA188

UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.  

  1. 特性
  2. 应用范围
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V)
    6. 6.6 Electrical Characteristics: VS = ±2 V to < ±4 V (VS = 4 V to < 8 V)
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Inside the INA188
      2. 7.3.2 Setting the Gain
        1. 7.3.2.1 Gain Drift
      3. 7.3.3 Zero Drift Topology
        1. 7.3.3.1 Internal Offset Correction
        2. 7.3.3.2 Noise Performance
        3. 7.3.3.3 Input Bias Current Clock Feedthrough
      4. 7.3.4 EMI Rejection
      5. 7.3.5 Input Protection and Electrical Overstress
      6. 7.3.6 Input Common-Mode Range
    4. 7.4 Device Functional Modes
      1. 7.4.1 Single-Supply Operation
      2. 7.4.2 Offset Trimming
      3. 7.4.3 Input Bias Current Return Path
      4. 7.4.4 Driving the Reference Pin
      5. 7.4.5 Error Sources Example
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 开发支持
    2. 11.2 文档支持
      1. 11.2.1 相关文档 
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage Supply ±20 V
40 (single supply)
Current ±10 mA
Analog input range(2) (V–) – 0.5 (V+) + 0.5 V
Output short-circuit(3) Continuous
Temperature Operating range, TA –55 150 °C
Junction, TJ 150
Storage temperature, Tstg –65 150
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails must be current limited to 10 mA or less.
(3) Short-circuit to ground.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VS Supply voltage 4 (±2) 36 (±18) V
Specified temperature -40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) INA188 UNIT
D (SOIC) DRG (WSON)
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 125 145 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 80 75 °C/W
RθJB Junction-to-board thermal resistance 68 39 °C/W
ψJT Junction-to-top characterization parameter 32 14 °C/W
ψJB Junction-to-board characterization parameter 68 105 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V)

At TA = 25°C, RL = 10 kΩ, VREF = VS / 2, and G = 1, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT(1)
VOSI Input stage offset voltage At RTI(2) ±25 ±55 μV
At RTI, TA = –40°C to +125°C ±0.08 ±0.2 μV/°C
VOSO Output stage offset voltage At RTI ±60 ±170 μV
At RTI, TA = –40°C to +125°C ±0.2 ±0.35 μV/°C
VOS Offset voltage At RTI ±25 ±60 / G ±55 ±170 / G μV
At RTI, TA = –40°C to +125°C ±0.2 ±0.35 / G μV/°C
PSRR Power-supply rejection ratio G = 1, VS = 4 V to 36 V, VCM = VS / 2 ±0.7 ±2.25 µV/V
G = 10, VS = 4 V to 36 V, VCM = VS / 2 ±0.6
G = 100, VS = 4 V to 36 V, VCM = VS / 2 ±0.45
G = 1000, VS = 4 V to 36 V, VCM = VS / 2 ±0.3 ±0.8
Long-term stability 1(3) µV
Turn-on time to specified VOSI See the Typical Characteristics
zid Differential input impedance 100 || 6 GΩ || pF
zic Common-mode input impedance 100 || 9.5
VCM Common-mode voltage range The input signal common-mode range can be calculated with this tool (V–) + 0.1 (V+) – 1.5 V
CMRR Common-mode rejection ratio G = 1, at dc to 60 Hz, VCM = (V–) + 1.0 V to
(V+) – 2.5 V
84 90 dB
G = 10, at dc to 60 Hz, VCM = (V–) + 1.0 V to (V+) – 2.5 V 104 110
G = 100, at dc to 60 Hz, VCM = (V–) + 1.0 V to (V+) – 2.5 V 118 130
G = 1000, at dc to 60 Hz, VCM = (V–) + 1.0 V to (V+) – 2.5 V 118 130
INPUT BIAS CURRENT
IIB Input bias current ±850 ±2500 pA
TA = –40°C to +125°C See Figure 10 pA/°C
IOS Input offset current ±850 ±2500 pA
TA = –40°C to +125°C See Figure 11 pA/°C
INPUT VOLTAGE NOISE
eNI Input voltage noise f = 1 kHz, G = 100, RS = 0 Ω 12.5 nV/√Hz
f = 0.1 Hz to 10 Hz, G = 100, RS = 0 Ω 0.25 μVPP
eNO Output voltage noise f = 1 kHz, G = 100, RS = 0 Ω 118 nV/√Hz
f = 0.1 Hz to 10 Hz, G = 100, RS = 0 Ω 2.5 μVPP
iN Input current noise f = 1 kHz 440 fA/√Hz
f = 0.1 Hz to 10 Hz 10 pAPP
GAIN
G Gain equation 1 + (50 kΩ / RG) V/V
Gain range 1 1000 V/V
EG Gain error G = 1, (V–) + 0.5 V ≤ VO ≤ (V+) – 1.5 V ±0.007% ±0.025%
G = 10, (V–) + 0.5 V ≤ VO ≤ (V+) – 1.5 V ±0.05% ±0.20%
G = 100, (V–) + 0.5 V ≤ VO ≤ (V+) – 1.5 V ±0.06% ±0.20%
G = 1000, (V–) + 0.5 V ≤ VO ≤ (V+) – 1.5 V ±0.2% ±0.50%
Gain versus temperature G = 1, TA = –40°C to +125°C 1 5 ppm/°C
G > 1(4) , TA = –40°C to +125°C 15 50
Gain nonlinearity G = 1, VO = –10 V to +10 V 3 8 ppm
G > 1, VO = –10 V to +10 V See Figure 42 to Figure 45
OUTPUT
Output voltage swing from rail(5) RL = 10 kΩ(5) 220 250 mV
Capacitive load drive 1 nF
ISC Short-circuit current Continuous to common ±18 mA
FREQUENCY RESPONSE
BW Bandwidth, –3 dB G = 1 600 kHz
G = 10 95
G = 100 15
G = 1000 1.5
SR Slew rate G = 1, VS = ±18 V, VO = 10-V step 0.9 V/μs
G = 100, VS = ±18 V, VO = 10-V step 0.17
tS Settling time To 0.1% G = 1, VS = ±18 V, VSTEP = 10 V 50 μs
G = 100, VS = ±18 V, VSTEP = 10 V 400
To 0.01% G = 1, VS = ±18 V, VSTEP = 10 V 60 μs
G = 100, VS = ±18 V, VSTEP = 10 V 500
Overload recovery 50% overdrive 75 μs
REFERENCE INPUT
RIN Input impedance 40
Voltage range V– V+ V
POWER SUPPLY
Voltage range Single 4 36 V
Dual ±2 ±18
IQ Quiescent current VIN = VS / 2 1.4 1.6 mA
TA = –40°C to +125°C 1.8
TEMPERATURE RANGE
Specified temperature range –40 125 °C
Operating temperature range –55 150 °C
(1) Total VOS, referred-to-input = (VOSI) + (VOSO / G).
(2) RTI = Referred-to-input.
(3) 300-hour life test at 150°C demonstrated a randomly distributed variation of approximately 1 μV.
(4) Does not include effects of external resistor RG.
(5) See Typical Characteristics curves, Output Voltage Swing vs Output Current (Figure 19 to Figure 22).

6.6 Electrical Characteristics: VS = ±2 V to < ±4 V (VS = 4 V to < 8 V)

At TA = 25°C, RL = 10 kΩ, VREF = VS / 2, and G = 1, unless otherwise noted. Specifications not shown are identical to the Electrical Characteristics table for VS = ±2 V to ±18 V (VS = 8 V to 36 V).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT(1)
VOSI Input stage offset voltage At RTI(2) ±25 ±55 μV
At RTI, TA = –40°C to +125°C ±0.08 ±0.2 μV/°C
VOSO Output stage offset voltage At RTI ±60 ±170 μV
At RTI, TA = –40°C to +125°C ±0.2 ±0.35 μV/°C
VOS Offset voltage At RTI ±25 ±60 / G ±55 ±170 / G μV
At RTI, TA = –40°C to +125°C ±0.2 ±0.35 / G μV/°C
Long-term stability 1(2) µV
Turn-on time to specified VOSI See the Typical Characteristics
zid Differential input impedance 100 || 6 GΩ || pF
zic Common-mode input impedance 100 || 9.5
VCM Common-mode voltage range VO = 0 V, the input signal common-mode range can be calculated with this tool (V–) (V+) – 1.5 V
CMRR Common-mode rejection ratio G = 1, at dc to 60 Hz, VCM = (V–) + 1.0 V to
(V+) – 2.5 V
80 90 dB
G = 10, at dc to 60 Hz, VCM = (V–) + 1.0 V to
(V+) – 2.5 V
94 110
G = 100, at dc to 60 Hz, VCM = (V–) + 1.0 V to (V+) – 2.5 V 102 120
G = 1000, at dc to 60 Hz, VCM = (V–) + 1.0 V to (V+) – 2.5 V 102 120
INPUT BIAS CURRENT
IIB Input bias current ±850 ±2500 pA
TA = –40°C to +125°C See Figure 10 pA/°C
IOS Input offset current ±850 ±2500 pA
TA = –40°C to +125°C See Figure 11 pA/°C
INPUT VOLTAGE NOISE
eNI Input voltage noise f = 1 kHz, G = 100, RS = 0 Ω 12.5 nV/√Hz
f = 0.1 Hz to 10 Hz, G = 100, RS = 0 Ω 0.25 μVPP
eNO Output voltage noise f = 1 kHz, G = 100, RS = 0 Ω 118 nV/√Hz
f = 0.1 Hz to 10 Hz, G = 100, RS = 0 Ω 2.5 μVPP
iN Input current noise f = 1 kHz 430 fA/√Hz
f = 0.1 Hz to 10 Hz 10 pAPP
GAIN
G Gain equation 1 + (50 kΩ / RG) V/V
Gain range 1 1000 V/V
EG Gain error G = 1, (V–) + 0.5 V ≤ VO ≤ (V+) – 1.5 V ±0.007% ±0.05%
G = 10, (V–) + 0.5 V ≤ VO ≤ (V+) – 1.5 V ±0.07% ±0.2%
G = 100, (V–) + 0.5 V ≤ VO ≤ (V+) – 1.5 V ±0.07% ±0.2%
G = 1000, (V–) + 0.5 V ≤ VO ≤ (V+) – 1.5 V ±0.25% ±0.5%
Gain versus temperature G = 1, TA = –40°C to +125°C 1 5 ppm/°C
G > 1(3), TA = –40°C to +125°C 15 50
Gain nonlinearity G = 1, VO = (V–) + 0.5 V ≤ VO ≤ (V+) – 1.5 V 3 8 ppm
OUTPUT
Output voltage swing from rail(5) RL = 10 kΩ 220 250 mV
Capacitive load drive 1 nF
ISC Short-circuit current Continuous to common ±18 mA
FREQUENCY RESPONSE
BW Bandwidth, –3 dB G = 1 600 kHz
G = 10 95
G = 100 15
G = 1000 1.5
SR Slew rate G = 1, VS = 5 V, VO = 4-V step 0.9 V/μs
G = 100, VS = 5 V, VO = 4-V step 0.17
tS Settling time To 0.1% G = 1, VS = 5 V, VSTEP = 4 V 50 μs
G = 100, VS = 5 V, VSTEP = 4 V 400
To 0.01% G = 1, VS = 5 V, VSTEP = 4 V 60 μs
G = 100, VS = 5 V, VSTEP = 4 V 500
Overload recovery 50% overdrive 75 μs
REFERENCE INPUT
RIN Input impedance 40
Voltage range V– V+ V
POWER SUPPLY
Voltage range Single 4 36 V
Dual ±2 ±18
IQ Quiescent current VIN = VS / 2 1.4 1.6 mA
TA = –40°C to +125°C 1.8
TEMPERATURE RANGE
Specified temperature range –40 125 °C
Operating temperature range –55 150 °C
(1) Total VOS, referred-to-input = (VOSI) + (VOSO / G).
(2) 300-hour life test at 150°C demonstrated randomly distributed variation of approximately 1 μV.
(3) Does not include effects of external resistor RG.

6.7 Typical Characteristics

At TA = 25°C, VS = ±15 V, RL = 10 kΩ, VREF = midsupply, and G = 1, unless otherwise noted.
INA188 D005_SBS0632.gif
Figure 1. Input Voltage Offset Distribution
INA188 D006_SBS0632.gif
Figure 3. Output Voltage Offset Distribution
INA188 D846_SBOS632.gif
Figure 5. Input Bias Current Distribution
INA188 D848_SBOS632.gif
G = 1
Figure 7. CMRR Distribution
INA188 D107_SBOS632.gif
Figure 9. Input Bias Current vs Common-Mode Voltage
INA188 D121_SBOS632.gif
Figure 11. Input Offset Current vs Temperature
INA188 D126_SBOS632.gif
At RTI
Figure 13. Positive PSRR vs Frequency
INA188 D131_SBOS632.gif
At RTI
Figure 15. Gain vs Frequency
INA188 D134_SBOS632.gif
At RTI, 1-kΩ Source Imbalance
Figure 17. CMRR vs Frequency
INA188 D201_SBOS632.gif
VS = ±18 V
Figure 19. Positive Output Voltage Swing vs
Output Current
INA188 D203_SBOS632.gif
VS = ±2 V
Figure 21. Positive Output Voltage Swing vs
Output Current
INA188 D205_SBOS632.gif
Figure 23. Voltage Noise Spectral Density vs Frequency
INA188 D736_SBOS632.gif
G = 1000
Figure 25. 0.1-Hz to 10-Hz RTI Voltage Noise
INA188 D738_SBOS632.gif
Figure 27. 0.1-Hz to 10-Hz RTI Current Noise
INA188 D211_SBOS632.gif
RL = 10 kΩ, CL = 100 pF, G = 1
Figure 29. Large-Signal Pulse Response
INA188 D213_SBOS632.gif
RL = 10 kΩ, CL = 100 pF, G = 100
Figure 31. Large-Signal Pulse Response
INA188 D215_SBOS632.gif
RL = 10 kΩ, CL = 100 pF, G = 1
Figure 33. Small-Signal Pulse Response
INA188 D217_SBOS632.gif
RL = 10 kΩ, CL = 100 pF, G = 100
Figure 35. Small-Signal Pulse Response
INA188 D219_SBOS632.gif
G = 1
Figure 37. Small-Signal Response vs Capacitive Load
INA188 D223_SBOS632.gif
Figure 39. Supply Current vs Temperature
INA188 tc_oloop_iout-frq_bos642.gif
Figure 41. Open-Loop Output Impedance
INA188 D430_SBOS632.gif
G = 10
Figure 43. Gain Nonlinearity
INA188 D429_SBOS632.gif
G = 1000
Figure 45. Gain Nonlinearity
INA188 D844_SBOS632.gif
–40°C to +125°C
Figure 2. Input Voltage Offset Drift Distribution
INA188 D845_SBOS632.gif
–40°C to +125°C
Figure 4. Output Voltage Offset Drift Distribution
INA188 D847_SBOS632.gif
Figure 6. Input Offset Current Distribution
INA188 D849_SBOS632.gif
G = 100
Figure 8. CMRR Distribution
INA188 D109_SBOS632.gif
Figure 10. Input Bias Current vs Temperature
INA188 D122_SBOS632.gif
Figure 12. Change in Input Offset Voltage vs Warm-Up Time
INA188 D125_SBOS632.gif
Figure 14. Negative PSRR vs Frequency
INA188 D132_SBOS632.gif
At RTI
Figure 16. CMRR vs Frequency
INA188 D856_SBOS632.gif
Figure 18. Common-Mode Rejection Ratio vs Temperature
INA188 D202_SBOS632.gif
VS = ±18 V
Figure 20. Negative Output Voltage Swing vs
Output Current
INA188 D204_SBOS632.gif
VS = ±2 V
Figure 22. Negative Output Voltage Swing vs
Output Current
INA188 D735_SBOS632.gif
G = 1
Figure 24. 0.1-Hz to 10-Hz RTI Voltage Noise
INA188 D737_SBOS632.gif
Figure 26. Current Noise Spectral Density vs Frequency
INA188 D210_SBOS632.gif
Figure 28. Large-Signal Response vs Frequency
INA188 D212_SBOS632.gif
RL = 10 kΩ, CL = 100 pF, G = 10
Figure 30. Large-Signal Pulse Response
INA188 D214_SBOS632.gif
RL = 10 kΩ, CL = 100 pF, G = 1000
Figure 32. Large-Signal Pulse Response
INA188 D216_SBOS632.gif
RL = 10 kΩ, CL = 100 pF, G = 10
Figure 34. Small-Signal Pulse Response
INA188 D218_SBOS632.gif
RL = 10 kΩ, CL = 100 pF, G = 1000
Figure 36. Small-Signal Pulse Response
INA188 D739_SBOS632.gif
Figure 38. Total Harmonic Distortion + Noise vs Frequency
INA188 D224_SBOS632.gif
Figure 40. Supply Current vs Supply Voltage
INA188 D428_SBOS632.gif
G = 1
Figure 42. Gain Nonlinearity
INA188 D431_SBOS632.gif
G = 100
Figure 44. Gain Nonlinearity
INA188 D225_SBOS632.gif
Figure 46. EMIRR