ZHCSK07A July   2019  – January 2021 INA253-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Integrated Shunt Resistor
      2. 7.3.2 Short-Circuit Duration
      3. 7.3.3 Temperature Stability
      4. 7.3.4 Enhanced PWM Rejection Operation
      5. 7.3.5 Input Signal Bandwidth
    4. 7.4 Device Functional Modes
      1. 7.4.1 Adjusting the Output Midpoint With the Reference Pins
      2. 7.4.2 Reference Pin Connections for Unidirectional Current Measurements
      3. 7.4.3 Ground Referenced Output
      4. 7.4.4 Reference Pin Connections for Bidirectional Current Measurements
        1. 7.4.4.1 Output Set to External Reference Voltage
      5. 7.4.5 Output Set to Mid-Supply Voltage
      6. 7.4.6 Output Set to Mid-External Reference
      7. 7.4.7 Output Set Using Resistor Divide
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Input Filtering
    2. 8.2 Typical Applications
      1. 8.2.1 High-Side, High-Drive, Solenoid Current-Sense Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Speaker Enhancements and Diagnostics Using Current Sense Amplifier
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
    2. 11.2 Related Documentation
    3. 11.3 接收文档更新通知
    4. 11.4 支持资源
    5. 11.5 Trademarks
    6. 11.6 静电放电警告
    7. 11.7 术语表
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Input Signal Bandwidth

The INA253-Q1 input signal, which represents the current being measured, is accurately measured with minimal disturbance from large ΔV/Δt common-mode transients as previously described. For PWM signals typically associated with motors, solenoids, and other switching applications, the current being monitored varies at a significantly slower rate than the faster PWM frequency.

The INA253-Q1 bandwidth is defined by the –3-dB bandwidth of the current-sense amplifier inside the device; see Section 6.5 for more information. The device bandwidth provides fast throughput and fast response required for the rapid detection and processing of overcurrent events. Without the higher bandwidth, protection circuitry may not have adequate response time, and damage may occur to the monitored application or circuit.

Figure 7-4 shows the performance profile of the device over frequency. Harmonic distortion increases at the upper end of the amplifier bandwidth with no adverse change in detection of overcurrent events. However, increased distortion at the highest frequencies must be considered when the measured current bandwidth begins to approach the INA253-Q1 bandwidth.

GUID-05EC9F25-E0CB-414E-9490-D33AE4D8C961-low.gifFigure 7-4 Amplifier Performance Over Frequency

For applications requiring distortion sensitive signals, Figure 7-4 provides information to show that there is an optimal frequency performance range for the amplifier. The full amplifier bandwidth is always available for fast overcurrent events at the same time that the lower-frequency signals are amplified at a low distortion level. The output signal accuracy is reduced for frequencies closer to the maximum bandwidth. Individual requirements determine the acceptable limits of distortion for high-frequency, current-sensing applications. Testing and evaluation in the end application or circuit are required to determine the acceptance criteria, and to validate the performance levels meet the system specifications.