ZHCSFT4A March 2016 – August 2016 ISO7820LL , ISO7821LL
PRODUCTION DATA.
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCCx | Supply voltage(2) | VCC1, VCC2 | –0.5 | 6 | V |
V | Voltage on input, output, and enable pins | OUTx, INx, ENx | –0.5 | VCCx + 0.5(3) | V |
IO | Maximum current through OUTx pins | –20 | 20 | mA | |
TJ | Junction temperature | –55 | 150 | °C | |
Tstg | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±4500 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±1500 |
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
VCC1, VCC2 | Supply voltage | 2.25 | 3.3 | 5.5 | V | |
|VID| | Magnitude of RX input differential voltage | Driven with voltage sources on RX pins | 100 | 600 | mV | |
VIC | RX input common-mode voltage | VCC1, VCC2 ≥ 3 V | 0.5 |VID| | 2.4 – 0.5 |VID| | V | |
VCC1, VCC2 < 3 V | 0.5 |VID| | VCCx – 0.6 – 0.5 |VID| | V | |||
RL | TX far end differential termination | 100 | Ω | |||
DR | Signaling rate | 0 | 100 | Mbps | ||
TA | Ambient temperature | –55 | 25 | 125 | °C |
THERMAL METRIC(1) | ISO7820LL ISO7821LL |
UNIT | |||
---|---|---|---|---|---|
DW (SOIC) | DWW (SOIC) | ||||
16 PINS | 16 PINS | ||||
RθJA | Junction-to-ambient thermal resistance | 82 | 84.6 | °C/W | |
RθJC(top) | Junction-to-case(top) thermal resistance | 44.6 | 46.4 | °C/W | |
RθJB | Junction-to-board thermal resistance | 46.6 | 55.3 | °C/W | |
ψJT | Junction-to-top characterization parameter | 17.8 | 18.7 | °C/W | |
ψJB | Junction-to-board characterization parameter | 46.1 | 54.5 | °C/W | |
RθJC(bottom) | Junction-to-case(bottom) thermal resistance | — | — | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
ISO7821LL | ||||||
PD | Maximum power dissipation (both sides) | 156 | mW | |||
PD1 | Maximum power dissipation (side 1) | 78 | mW | |||
PD2 | Maximum power dissipation (side 2) | 78 | mW | |||
ISO7820LL | ||||||
PD | Maximum power dissipation (both sides) | 152 | mW | |||
PD1 | Maximum power dissipation (side 1) | 36 | mW | |||
PD2 | Maximum power dissipation (side 2) | 116 | mW |
PARAMETER | TEST CONDITIONS | SPECIFICATION | UNIT | ||
---|---|---|---|---|---|
DW | DWW | ||||
GENERAL | |||||
CLR | External clearance(1) | Shortest terminal-to-terminal distance through air | >8 | >14.5 | mm |
CPG | External creepage(1) | Shortest terminal-to-terminal distance across the package surface | >8 | >14.5 | mm |
DTI | Distance through the insulation | Minimum internal gap (internal clearance) | >21 | >21 | μm |
CTI | Tracking resistance (comparative tracking index) | DIN EN 60112 (VDE 0303–11); IEC 60112; UL 746A | >600 | >600 | V |
Material group | According to IEC 60664-1 | I | I | ||
Overvoltage category per IEC 60664-1 | Rated mains voltage ≤ 600 VRMS | I–IV | I–IV | ||
Rated mains voltage ≤ 1000 VRMS | I–III | I–IV | |||
DIN V VDE V 0884–10 (VDE V 0884–10):2006–12(2) | |||||
VIORM | Maximum repetitive peak isolation voltage | AC voltage (bipolar) | 2121 | 2828 | VPK |
VIOWM | Maximum isolation working voltage | AC voltage (sine wave); time dependent dielectric breakdown (TDDB) test; see Figure 1 and Figure 2 | 1500 | 2000 | VRMS |
DC voltage | 2121 | 2828 | VDC | ||
VIOTM | Maximum transient isolation voltage | VTEST = VIOTM
t = 60 s (qualification) t = 1 s (100% production) |
8000 | 8000 | VPK |
VIOSM | Maximum surge isolation voltage(3) | Test method per IEC 60065, 1.2/50 µs waveform, VTEST = 1.6 × VIOSM = 12800 VPK (qualification) |
8000 | 8000 | VPK |
qpd | Apparent charge(4) | Method a: After I/O safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM = 2545 VPK (DW) and 3394 VPK (DWW), tm = 10 s |
≤5 | ≤5 | pC |
Method a: After environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM = 3394 VPK (DW) and 4525 VPK (DWW), tm = 10 s |
≤5 | ≤5 | |||
Method b1: At routine test (100% production) and preconditioning (type test) Vini = VIORM, tini = 1 s; Vpd(m) = 1.875 × VIORM= 3977 VPK (DW) and 5303 VPK (DWW), tm = 1 s |
≤5 | ≤5 | |||
CIO | Barrier capacitance, input to output(5) | VIO = 0.4 × sin (2πft), f = 1 MHz | ~0.7 | ~0.7 | pF |
RIO | Isolation resistance, input to output(5) | VIO = 500 V, TA = 25°C | >1012 | >1012 | Ω |
VIO = 500 V, 100°C ≤ TA ≤ 125°C | >1011 | >1011 | |||
VIO = 500 V at TS = 150°C | >109 | >109 | |||
Pollution degree | 2 | 2 | |||
Climatic category | 55/125/21 | 55/125/21 | |||
UL 1577 | |||||
VISO | Withstanding isolation voltage | VTEST = VISO = 5700 VRMS, t = 60 s (qualification); VTEST = 1.2 × VISO = 6840 VRMS, t = 1 s (100% production) |
5700 | 5700 | VRMS |
VDE | CSA | UL | CQC | TUV |
---|---|---|---|---|
Plan to certify according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 60950-1 (VDE 0805 Teil 1):2011-01 | Plan to certify under CSA Component Acceptance Notice 5A, IEC 60950-1 and IEC 60601-1 | Plan to certify according to UL 1577 Component Recognition Program | Plan to certify according to GB 4943.1-2011 | Plan to certify according to EN 61010-1:2010 (3rd Ed) and EN 60950-1:2006/A11:2009/A1:2010/ A12:2011/A2:2013 |
Reinforced insulation Maximum transient isolation voltage, 8000 VPK; Maximum repetitive peak isolation voltage, 2121 VPK (DW), 2828 VPK (DWW); Maximum surge isolation voltage, 8000 VPK |
Reinforced insulation per CSA 60950-1-07+A1+A2 and IEC 60950-1 2nd Ed., 800 VRMS (DW package) and 1450 VRMS (DWW package) max working voltage (pollution degree 2, material group I); | Single protection, 5700 VRMS |
Reinforced Insulation, Altitude ≤ 5000 m, Tropical Climate, 250 VRMS maximum working voltage | 5700 VRMS Reinforced insulation per EN 61010-1:2010 (3rd Ed) up to working voltage of 600 VRMS (DW package) and 1000 VRMS (DWW package) |
2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3.1, 250 VRMS (354 VPK) max working voltage (DW package) | 5700 VRMS Reinforced insulation per EN 60950-1:2006/A11:2009/A1:2010/ A12:2011/A2:2013 up to working voltage of 800 VRMS (DW package) and 1450 VRMS (DWW package) |
|||
Certification planned | Certification planned | Certification planned | Certification planned | Certification planned |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
DW PACKAGE | ||||||
IS | Safety input, output, or supply current | RθJA = 82°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 3 |
277 | mA | ||
RθJA = 82°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 3 |
423 | |||||
RθJA = 82°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 3 |
554 | |||||
PS | Safety input, output, or total power | RθJA = 82°C/W, TJ = 150°C, TA = 25°C, see Figure 5 |
1524 | mW | ||
TS | Maximum safety temperature | 150 | °C | |||
DWW PACKAGE | ||||||
IS | Safety input, output, or supply current | RθJA = 84.6°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 4 |
269 | mA | ||
RθJA = 84.6°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 4 |
410 | |||||
RθJA = 84.6°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 4 |
537 | |||||
PS | Safety input, output, or total power | RθJA = 84.6°C/W, TJ = 150°C, TA = 25°C, see Figure 6 |
1478 | mW | ||
TS | Maximum safety temperature | 150 | °C |
The maximum safety temperature is the maximum junction temperature specified for the device. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information is that of a device installed on a High-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
IIN(EN) | Leakage Current on ENx pins | Internal pullup on ENx pins | 13 | 40 | μA | |
VCC+(UVLO) | Positive-going undervoltage-lockout (UVLO) threshold | 2.25 | V | |||
VCC–(UVLO) | Negative-going UVLO threshold | 1.7 | V | |||
VHYS(UVLO) | UVLO threshold hysteresis | 0.2 | V | |||
VEN(ON) | EN pin turn-on threshold | 0.7 VCCx | V | |||
VEN(OFF) | EN pin turn-off threshold | 0.3 VCCx | V | |||
VEN(HYS) | EN pin threshold hysteresis | 0.1 VCCx | V | |||
CMTI | Common-mode transient immunity | VI = VCCI(1) or 0 V; VCM = 1000 V; see Figure 25 |
100 | 120 | kV/μs | |
LVDS TX | ||||||
|VOD| | TX DC output differential voltage | RL = 100 Ω, See Figure 26 | 250 | 350 | 450 | mV |
∆VOD | Change in TX DC output differential between logic 1 and 0 states | RL = 100 Ω, see Figure 26 | –10 | 0 | 10 | mV |
VOC | TX DC output common mode voltage | RL = 100 Ω, see Figure 26 | 1.125 | 1.2 | 1.375 | V |
∆VOC | TX DC common mode voltage difference | RL = 100 Ω, see Figure 26 | –25 | 0 | 25 | mV |
IOS | TX output short circuit current through OUTx | OUTx = 0 | 10 | mA | ||
OUTxP = OUTxM | 10 | |||||
IOZ | TX output current when in high impedance | ENx = 0, OUTx from 0 to VCC | –5 | 5 | µA | |
COUT | TX output pad capacitance on OUTx at 1 MHz | DW package: ENx = 0, DC offset = VCC / 2, Swing = 200 mV, f = 1 MHz |
10 | pF | ||
DWW package: ENx = 0, DC offset = VCC / 2, Swing = 200 mV, f = 1 MHz |
10 | |||||
LVDS RX | ||||||
VIC | RX input common mode voltage | VCC1, VCC2 ≥ 3 V | 0.5 |VID| | 1.2 | 2.4 – 0.5 |VID| | V |
VCC1, VCC2 < 3 V | 0.5 |VID| | 1.2 | VCCx – 0.6 – 0.5 |VID| | |||
VIT1 | Positive going RX input differential threshold | Across VIC | 50 | mV | ||
VIT2 | Negative going RX input differential threshold | Across VIC | –50 | mV | ||
IINx | Input current on INx | From 0 to VCCx (each input independently) | 10 | 20 | µA | |
IINxP – IINxM | Input current balance | From 0 to VCCx | –6 | 6 | µA | |
CIN | RX input pad capacitance on INx at 1 MHz | DW package: DC offset = 1.2 V, Swing = 200 mV, f = 1 MHz |
6.6 | pF | ||
DWW package: DC offset = 1.2 V, Swing = 200 mV, f = 1 MHz |
7.5 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
ISO7821LL | |||||||
ICC1
ICC2 |
Supply current side 1 and side 2 |
2.25 V < VCC1, VCC2 < 3.6 V | EN1 = EN2 = 0, OUTx floating, VID ≥ 50 mV | 2.2 | 3.3 | mA | |
EN1 = EN2 = 0, OUTx floating, VID ≤ –50 mV | 3.4 | 5.1 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, VID ≥ 50 mV | 6.1 | 9.2 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, VID ≤ –50 mV | 7.4 | 11.1 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 1 Mbps |
6.7 | 10.2 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 50 Mbps |
7.4 | 11.5 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 100 Mbps |
8.3 | 12.5 | |||||
4.5 V < VCC1, VCC2 < 5.5 V |
EN1 = EN2 = 0, OUTx floating, VID ≥ 50 mV | 2.2 | 3.4 | ||||
EN1 = EN2 = 0, OUTx floating, VID ≤ –50 mV | 3.5 | 5.2 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, VID ≥ 50 mV | 6.4 | 9.8 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, VID ≤ –50 mV | 7.8 | 11.7 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 1 Mbps |
7.1 | 10.8 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 50 Mbps |
8.1 | 12.1 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 100 Mbps |
9.5 | 14.1 | |||||
ISO7820LL | |||||||
ICC1 | Supply current side 1 |
2.25 V < VCC1, VCC2 < 3.6 V | EN1 = EN2 = 0, OUTx floating, VID ≥ 50 mV | 2.7 | 4.3 | mA | |
EN1 = EN2 = 0, OUTx floating, VID ≤ –50 mV | 5.3 | 7.9 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, VID≥ 50 mV | 2.7 | 4.2 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, VID ≤ –50 mV | 5.2 | 8 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 1 Mbps |
4 | 6.1 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 50 Mbps |
4.1 | 6.2 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 100 Mbps |
4.3 | 6.4 | |||||
4.5 V < VCC1, VCC2 < 5.5 V |
EN1 = EN2 = 0, OUTx floating, VID ≥ 50 mV | 2.8 | 4.4 | ||||
EN1 = EN2 = 0, OUTx floating, VID ≤ –50 mV | 5.5 | 8.2 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, VID ≥ 50 mV | 2.9 | 4.5 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, VID ≤ –50 mV | 5.5 | 8.2 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 1 Mbps |
4.2 | 6.3 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 50 Mbps |
4.3 | 6.4 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 100 Mbps |
4.5 | 6.6 | |||||
ISO7820LL (continued) | |||||||
ICC2 | Supply current side 2 |
2.25 V < VCC1, VCC2 < 3.6 V | EN1 = EN2 = 0, OUTx floating, VID ≥ 50 mV | 1.1 | 1.7 | mA | |
EN1 = EN2 = 0, OUTx floating, VID ≤ –50 mV | 1.1 | 1.7 | |||||
VID≥ 50 mV | 9.1 | 13.7 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, VID ≤ –50 mV | 9.2 | 13.9 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 1 Mbps |
9.2 | 13.8 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 50 Mbps |
10.3 | 15.5 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 100 Mbps |
12.1 | 17.9 | |||||
4.5 V < VCC1, VCC2 < 5.5 V |
EN1 = EN2 = 0, OUTx floating, VID ≥ 50 mV | 1.2 | 1.8 | ||||
EN1 = EN2 = 0, OUTx floating, VID ≤ –50 mV | 1.2 | 1.8 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, VID ≥ 50 mV | 9.7 | 14.7 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, VID ≤ –50 mV | 9.7 | 14.8 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 1 Mbps |
9.7 | 14.7 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 50 Mbps |
11.5 | 17.3 | |||||
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at 100 Mbps |
14.2 | 21 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
LVDS CHANNEL | ||||||
tPLH
tPHL |
Propagation delay time | 17 | 25 | ns | ||
PWD | Pulse width distortion |tPHL – tPLH| | 0 | 4.5 | ns | ||
tsk(o) | Channel-to-channel output skew time | Same directional channels, same voltage and temperature | 2.5 | ns | ||
tsk(pp) | Part-part skew | Same directional channels, same voltage and temperature | 4.5 | ns | ||
tCMset | Common-mode settling time after EN = 0 to EN = 1 transition. |
Common-mode capacitive load = 100 pF to 0.5 nF |
20 | µs | ||
tfs | Default output delay time from input power loss | Measured from the time VCC goes below 1.7 V, see Figure 24 | 0.2 | 9 | µs | |
tie | Time interval error, or peak-to-peak jitter |
216 – 1 PRBS data at 100 Mbps; RX VID = 350 mVPP, 1 ns trf 10% to 90%, TA = 25°C, VCC1, VCC2 = 3.3 V |
1 | ns | ||
LVDS TX AND RX | ||||||
trf | TX differential rise/fall times (20% to 80%) | See Figure 22 | 300 | 780 | 1380 | ps |
∆VOC(pp) | TX common-mode voltage peak-to-peak at 100 Mbps | 0 | 150 | mVPP | ||
tPLZ, tPHZ | TX disable time—valid output to HiZ | See Figure 23 | 10 | 20 | ns | |
tPZH | Enable propagation delay, high impedance-to-high output | See Figure 23 | 10 | 20 | ns | |
tPZL | Enable propagation delay, high impedance-to-low output | See Figure 23 | 2 | 2.5 | μs | |
|VID| | Magnitude of RX input differential voltage for valid operation | Driven with voltage sources on RX pins, see the figures in the Parameter Measurement Information section | 100 | 600 | mV | |
trf(RX) | Allowed RX input differential rise and fall times (20% to 80%) | See Figure 27 | 1 | 0.3 × UI(1) | ns |
TA upto 150°C | Operating lifetime = 135 years | |
Stress-voltage frequency = 60 Hz | ||
Isolation working voltage = 1500 VRMS |
TA upto 150°C | Operating lifetime = 34 years | |
Stress-voltage frequency = 60 Hz | ||
Isolation working voltage = 2000 VRMS |
TA = 25°C | CH-A toggle |
TA = 25°C |
Data rate = 100 Mbps | CH-B toggle |
TA = 25°C | CH-B toggle |
Data rate = 100 Mbps | CH-A toggle |
TA = 25°C |
TA = 25°C | CH-B toggle |
Data rate = 100 Mbps | CH-A toggle |
TA = 25°C | CH-A toggle |
TA = 25°C |
Data rate = 100 Mbps | CH-B toggle |
TA = 25°C |