ZHCSE61A July   2015  – September 2015 ISO7830

PRODUCTION DATA.  

  1. 特性
  2. 应用范围
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Rating
    6. 6.6  Electrical Characteristics, 5 V
    7. 6.7  Electrical Characteristics, 3.3 V
    8. 6.8  Electrical Characteristics, 2.5 V
    9. 6.9  Switching Characteristics, 5 V
    10. 6.10 Switching Characteristics, 3.3 V
    11. 6.11 Switching Characteristics, 2.5 V
    12. 6.12 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 High Voltage Feature Description
        1. 8.3.1.1 Package Insulation and Safety-Related Specifications
        2. 8.3.1.2 Insulation Characteristics
        3. 8.3.1.3 IEC 60664-1 Ratings Table
        4. 8.3.1.4 Regulatory Information
        5. 8.3.1.5 Safety Limiting Values
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device I/O Schematics
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Electromagnetic Compatibility (EMC) Considerations
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 PCB Material
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 文档支持
      1. 12.1.1 相关文档
    2. 12.2 相关链接
    3. 12.3 社区资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 Glossary
  13. 13机械、封装和可订购信息

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • DWW|16
  • DW|16
散热焊盘机械数据 (封装 | 引脚)
订购信息

8 Detailed Description

8.1 Overview

ISO7830 employs an ON-OFF Keying (OOK) modulation scheme to transmit the digital data across a silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the signal after advanced signal conditioning and produces the output through a buffer stage. If the EN pin is low then the output goes to high impedance. ISO7830 also incorporates advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions due the high frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, Figure 11, shows a functional block diagram of a typical channel.

8.2 Functional Block Diagram

ISO7830 ISO7830F fbd_sllsej0.gif Figure 11. Conceptual Block Diagram of a Digital Capacitive Isolator

Also a conceptual detail of how the ON/OFF Keying scheme works is shown in Figure 12.

ISO7830 ISO7830F on_off_keying_sllsej0.gif Figure 12. On-Off Keying (OOK) Based Modulation Scheme

8.3 Feature Description

PRODUCT CHANNEL DIRECTION RATED ISOLATION MAX DATA RATE DEFAULT OUTPUT
ISO7830 3 Forward
5700 VRMS / 8000 VPK (1) 100 Mbps High
ISO7830 3 Forward
5700 VRMS / 8000 VPK (1) 100 Mbps Low
(1) See Regulatory Information for detailed isolation ratings.

8.3.1 High Voltage Feature Description

8.3.1.1 Package Insulation and Safety-Related Specifications

over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
L(I01) Minimum air gap (clearance) Shortest terminal-to-terminal distance through air DW-16 8 mm
L(I02)(1) Minimum external tracking (creepage) Shortest terminal-to-terminal distance across the package surface DW-16 8 mm
CTI Tracking resistance (comparative tracking index) DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A 600 V
RIO Isolation resistance, input to output(2) VIO = 500 V, TA = 25°C 1012 Ω
VIO = 500 V, 100°C ≤ TA ≤ max 1011 Ω
CIO Barrier capacitance, input to output(2) VIO = 0.4 x sin (2πft), f = 1 MHz 2 pF
CI Input capacitance(3) VI = VCC/2 + 0.4 x sin (2πft), f = 1 MHz, VCC = 5 V 2 pF
(1) Per JEDEC package dimensions.
(2) All pins on each side of the barrier tied together creating a two-terminal device.
(3) Measured from input pin to ground.

NOTE

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance.

Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.

8.3.1.2 Insulation Characteristics

PARAMETER(1) TEST CONDITIONS SPECIFICATION UNIT
DTI Distance through the insulation Minimum internal gap (internal clearance) 21 μm
VIOWM Maximum isolation working voltage Time dependent dielectric breakdown (TDDB) Test 1500 VRMS
2121 VDC
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
VIOTM Maximum transient isolation voltage VTEST = VIOTM
t = 60 sec (qualification)
t= 1 sec (100% production)
8000 VPK
VIOSM Maximum surge isolation voltage Test method per IEC 60065, 1.2/50 µs waveform,
VTEST = 1.6 x VIOSM = 12800 VPK (qualification)
8000 VPK
VIORM Maximum repetitive peak isolation voltage 2121 VPK
VPR Input-to-output test voltage Method a, After Input/Output safety test subgroup 2/3,
VPR = VIORM x 1.2, t = 10 s,
Partial discharge < 5 pC
2545 VPK
Method a, After environmental tests subgroup 1,
VPR = VIORM x 1.6, t = 10 s,
Partial Discharge < 5 pC
3394
Method b1,
VPR = VIORM x 1.875, t = 1 s (100% Production test)
Partial discharge < 5 pC
3977
RS Isolation resistance VIO = 500 V at TS >109 Ω
Pollution degree 2
UL 1577
VISO Withstanding isolation voltage VTEST = VISO = 5700 VRMS, t = 60 sec (qualification),
VTEST = 1.2 x VISO = 6840 VRMS, t = 1 sec (100% production)
5700 VRMS
(1) Climatic Classification 55/125/21

8.3.1.3 IEC 60664-1 Ratings Table

PARAMETER TEST CONDITIONS SPECIFICATION
Basic isolation group Material group I
Installation classification Rated mains voltage ≤ 600 VRMS I–IV
Rated mains voltage ≤ 1000 VRMS I–III

8.3.1.4 Regulatory Information

DW package certifications are complete.

VDE CSA UL CQC
Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 60950-1 (VDE 0805 Teil 1):2011-01 Approved under CSA Component Acceptance Notice 5A, IEC 60950-1, IEC 61010-1, and IEC 60601-1 Certified according to UL 1577 Component Recognition Program Certified according to GB 4943.1-2011
Reinforced insulation
Maximum transient isolation voltage, 8000 VPK;
Maximum repetitive peak isolation voltage, 2121 VPK;
Maximum surge isolation voltage, 8000 VPK
Reinforced insulation per CSA 61010-1-12 and IEC 61010-1 3rd Ed., 300 VRMS max working voltage; Single protection, 5700 VRMS (1) Reinforced Insulation, Altitude ≤ 5000 m, Tropical Climate, 250 VRMS maximum working voltage
Reinforced insulation per CSA 60950-1-07+A1+A2 and IEC 60950-1 2nd Ed., 800 VRMS max working voltage (pollution degree 2, material group I) ;
2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3.1, 250 VRMS (354 VPK) max working voltage
Certificate number: 40040142 Master contract number: 220991 File number: E181974 Certificate number: CQC15001121716
(1) Production tested ≥ 6840 VRMS for 1 second in accordance with UL 1577.

8.3.1.5 Safety Limiting Values

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IS Safety input, output, or supply current for DW-16 Package RθJA = 78.9°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C 288 mA
RθJA = 78.9°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C 440
RθJA = 78.9°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C 576
PS Safety input, output, or total power RθJA = 78.9°C/W, TJ = 150°C, TA = 25°C 1584 mW
TS Maximum case temperature 150 °C

The maximum safety temperature is the maximum junction temperature specified for the device. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information is that of a device installed on a High-K test board for Leaded Surface Mount Packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance

ISO7830 ISO7830F D014_SLLSEJ0.gif Figure 13. Thermal Derating Curve per VDE for
DW-16 Package
ISO7830 ISO7830F D015_SLLSEJ0.gif Figure 14. Thermal Derating Curve for Safety Limiting Power per VDE

8.4 Device Functional Modes

ISO7830 functional modes are shown in Table 1.

Table 1. Function Table(1)

VCCI VCCO INPUT
(INx)(3)
OUTPUT ENABLE
(ENx)
OUTPUT
(OUTx)
COMMENTS
PU PU H H or open H Normal Operation:
A channel output assumes the logic state of its input.
L H or open L
Open H or open Default Default mode: When INx is open, the corresponding channel output goes to its default logic state. Default= High for ISO7830 and Low for ISO7830F
X PU X L Z A low value of Output Enable causes the outputs to be high-impedance
PD PU X H or open Default Default mode: When VCCI is unpowered, a channel output assumes the logic state based on the selected default option. Default= High for ISO7830 and Low for ISO7830F
When VCCI transitions from unpowered to powered-up, a channel output assumes the logic state of its input.
When VCCI transitions from powered-up to unpowered, channel output assumes the selected default state.
X PD X X Undetermined When VCCO is unpowered, a channel output is undetermined (2).
When VCCO transitions from unpowered to powered-up, a channel output assumes the logic state of its input
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC ≥ 2.25 V); PD = Powered down (VCC ≤ 1.7 V); X = Irrelevant; H = High level; L = Low level ; Z = High Impedance
(2) The outputs are in undetermined state when 1.7 V < VCCI, VCCO < 2.25 V.
(3) A strongly driven input signal can weakly power the floating VCC via an internal protection diode and cause undetermined output.

8.4.1 Device I/O Schematics

ISO7830 ISO7830F device_IO_schematic_sllseo2.gif Figure 15. Device I/O Schematics