ZHCSNL9A May   2021  – December 2021 ISOW1044

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. 说明(续)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  ThermalInformation
    5. 8.5  Power Ratings
    6. 8.6  Insulation Specifications
    7. 8.7  Safety-Related Certifications
    8. 8.8  Safety Limiting Values
    9. 8.9  Electrical Characteristics
    10. 8.10 Supply Current Characteristics
    11. 8.11 Switching Characteristics
    12. 8.12 Insulation Characteristics Curves
    13. 8.13 Typical Characteristics
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Power Isolation
    3. 10.3 Signal Isolation
    4. 10.4 CAN Transceiver
      1. 10.4.1 Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode
    5. 10.5 Functional Block Diagram
    6. 10.6 Feature Description
      1. 10.6.1 CAN Bus States
      2. 10.6.2 Digital Inputs and Outputs: TXD (Input) and RXD (Output)
      3. 10.6.3 TXD Dominant Timeout (DTO)
      4. 10.6.4 Power-Up and Power-Down Behavior
      5. 10.6.5 Protection Features
      6. 10.6.6 Floating Pins, Unpowered Device
      7. 10.6.7 Glitch-Free Power Up and Power Down
    7. 10.7 Device Functional Modes
    8. 10.8 Device I/O Schematics
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Application
      1. 11.2.1 Design Requirements
      2. 11.2.2 Detailed Design Procedure
        1. 11.2.2.1 Bus Loading, Length and Number of Nodes
        2. 11.2.2.2 CAN Termination
      3. 11.2.3 Application Curve
      4. 11.2.4 Insulation Lifetime
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
  14. 14Device and Documentation Support
    1. 14.1 Documentation Support
      1. 14.1.1 Related Documentation
    2. 14.2 Receiving Notification of Documentation Updates
    3. 14.3 支持资源
    4. 14.4 Trademarks
    5. 14.5 静电放电警告
    6. 14.6 术语表
  15. 15Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Floating Pins, Unpowered Device

The ISOW1044 is designed to be ideal passive or no load to the CAN bus if it is unpowered. The bus pins (CANH, CANL) have extremely low leakage currents when the device is unpowered to avoid loading down the bus which is critical if some nodes of the network are unpowered while the rest of the of network remains in operation.

The device has internal pull-ups on critical pins (TXD and STB) which places the device into known states if the pin floats. This internal bias should not be relied upon by design though, especially in noisy environments, but instead should be considered a failsafe protection feature. When a CAN controller supporting open drain outputs is used, an adequate external pull-up resistor must be used to ensure that the TXD output of the CAN controller maintains adequate bit timing to the input of the CAN transceiver. See Table 10-3 for more details.