ZHCSPK0 July   2022 ISOW7721

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. 说明(续)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Power Ratings
    6. 7.6  Insulation Specifications
    7. 7.7  Safety-Related Certifications
    8. 7.8  Safety Limiting Values
    9. 7.9  Electrical Characteristics - Power Converter
    10. 7.10 Supply Current Characteristics - Power Converter
    11. 7.11 Electrical Characteristics Channel Isolator - VIO, VISOIN = 5-V
    12. 7.12 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 5-V
    13. 7.13 Electrical Characteristics Channel Isolator - VIO, VISOIN = 3.3-V
    14. 7.14 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 3.3-V
    15. 7.15 Electrical Characteristics Channel Isolator - VIO, VISOIN = 2.5-V
    16. 7.16 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 2.5-V
    17. 7.17 Electrical Characteristics Channel Isolator - VIO, VISOIN = 1.8-V
    18. 7.18 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 1.8-V
    19. 7.19 Switching Characteristics - 5-V Supply
    20. 7.20 Switching Characteristics - 3.3-V Supply
    21. 7.21 Switching Characteristics - 2.5-V Supply
    22. 7.22 Switching Characteristics - 1.8-V Supply
    23. 7.23 Insulation Characteristics Curves
    24. 7.24 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
      1. 9.1.1 Power Isolation
      2. 9.1.2 Signal Isolation
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Electromagnetic Compatibility (EMC) Considerations
      2. 9.3.2 Power-Up and Power-Down Behavior
      3. 9.3.3 Protection Features
      4. 9.3.4 Multi-Device Chaining for Increased Power Output
    4. 9.4 Device Functional Modes
      1. 9.4.1 Device I/O Schematics
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curve
      4. 10.2.4 Insulation Lifetime
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 PCB Material
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Development Support
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 支持资源
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 术语表
  14. 14Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Electromagnetic Compatibility (EMC) Considerations

The ISOW7721 uses emissions reduction schemes for the internal oscillator and advanced internal layout scheme to minimize radiated emissions at the system level.

Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x and CISPR 32. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the ISOW7721 incorporates many chip-level design improvements for overall system robustness. Some of these improvements include:

  • Robust ESD protection cells for input and output signal pins and inter-chip bond pads.
  • Low-resistance connectivity of ESD cells to supply and ground pins.
  • Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.
  • Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance path.
  • PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic SCRs.
  • Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.
  • Power path and signal path separated to minimize internal high frequency coupling and an external filtering knob using ferrite beads available to further reduce emissions

  • Reduced power converter switching frequency to 25 MHz to reduce strength of high frequency components in emissions spectrum