ZHCSD41A DECEMBER   2012  – November 2014 LM10011

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Current DAC
      2. 7.3.2 Enable Pin and UVLO
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
      1. 7.5.1 VID Programming, 6-Bit Mode
      2. 7.5.2 VID Programming, 4-Bit Mode
      3. 7.5.3 Programming the Start-Up Current
      4. 7.5.4 IDAC_OUT Current Values
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Setting the VOUT Range and LSB
        2. 8.2.2.2 4-Bit Mode Design Example
        3. 8.2.2.3 Setting the Start-Up Voltage with RSET
        4. 8.2.2.4 Example Solution
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 商标
    2. 11.2 静电放电警告
    3. 11.3 术语表
  12. 12机械封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings(1)(2)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VDD, EN, IDAC_OUT, MODE –0.3 6 V
VIDA, VIDB, VIDC, VIDS –0.3 6 V
Junction Temperature 150 °C
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
(2) If Military- or Aerospace-specified devices are required, please contact the Texas Instruments Sales Office / Distributors for availability and specifications.

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –65 150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 2 kV
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) 1
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VDD 2.97 5.5 V
IDAC_OUT –0.3 VDD – 1.75 V
VIDA, VIDB, VIDC, VIDS, EN, MODE –0.3 5.5 V
Junction Temperature −40 125 °C
Ambient Temperature −40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) LM10011 UNIT
DSC
10 PINS
RθJA Junction-to-ambient thermal resistance(2) 52.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance(3) 30.6
RθJB Junction-to-board thermal resistance(4) 26.8
ψJT Junction-to-top characterization parameter(5) 0.9
ψJB Junction-to-board characterization parameter(6) 26.9
RθJC(bot) Junction-to-case (bottom) thermal resistance(7) 7.7
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

6.5 Electrical Characteristics

Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over –40°C to 125°C junction temperature range unless otherwise stated.(4)(5)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY, UVLO, AND ENABLE
IQ Quiescent current VDD = 5.0 V, VEN = 2.0 V 260 300 µA
IQ_FS Quiescent current, IDAC_OUT = IFS_6 VDD = 5.0 V, VEN = 2.0 V, IFS_6 382 µA
IQ_DIS Quiescent current disabled VDD = 5.0 V, VEN = 0.0 V 45 65 µA
VUVLO_R Undervoltage rising threshold VDD rising 2.65 2.95 V
VUVLO_F Undervoltage falling threshold VDD falling 2.2 2.45 V
VUVLO_HYS Hysteresis 200 mV
VEN Enable rising threshold VEN rising 1.20 1.34 1.45 V
VEN_HYS Enable hysteresis 50 100 180 mV
IEN Enable pullup current 2 µA
IDAC_OUT
ACC Accuracy Measured at full scale –1.25 1.25 %
ACC Accuracy Measured at full scale, 0°C to 100°C –1.0 1.0 %
LSB_6 DAC step size, 6-bit mode IFS_6 / (26 – 1) 940 nA
LSB_4 DAC step size, 4-bit mode IFS_4 / (24 – 1) 3.76 µA
IFS_6 Full-scale output current (6-bit mode) VID[5:0] = 000000b 59.2 µA
IFS_4 Full-scale output current (4-bit mode) VID[3:0] = 0000b 56.4 µA
INL Integral non-linearity –1 1 LSB_6
DNL Differential non-linearity –0.25 0.25 LSB_6
OFFSET Offset current VID[5:0] = 111111b (6-bit), VID[3:0] = 1111b (4-bit) 60 nA
VOUT_MAX IDAC_OUT compliance voltage VDD = 3 V, VDD-VIDAC_OUT 1.75 V
START-UP SET CURRENT
VSETFSR SET pin voltage FSR 1.12 1.2 1.23 V
SETRES SET ADC resolution 4 bits
SETRNG SET ADC current full-scale range 56.4 µA
ISET SET Current 4.75 5.1 5.40 µA
SET0 Start-up DAC error, code 0 RSET = 0 Ω, IDAC_OUT = 56.4 µA 0 0 LSB
SET1 Start-up DAC error, code 1 RSET = 21.0 kΩ(2), IDAC_OUT = 52.7 µA 0 0 LSB
SET2 Start-up DAC error, code 2 RSET = 35.7 kΩ(2), IDAC_OUT = 48.9 µA 0 0 LSB
SET3 Start-up DAC error, code 3 RSET = 51.1 kΩ(2), IDAC_OUT = 45.2 µA 0 0 LSB
SET4 Start-up DAC error, code 4(1) RSET = 71.5 kΩ(2), IDAC_OUT = 41.4 µA 0 1 LSB
SET5 Start-up DAC error, code 5(1) RSET = 86.6 kΩ(2), IDAC_OUT = 37.7 µA 0 1 LSB
SET6 Start-up DAC error, code 6(1) RSET = 105 kΩ(2), IDAC_OUT = 33.9 µA 0 1 LSB
SET7 Start-up DAC error, code 7(1) RSET = 118 kΩ(2), IDAC_OUT = 30.1 µA 0 1 LSB
SET8 Start-up DAC error, code 8(1) RSET = 140 kΩ(2), IDAC_OUT =26.4 µA 0 1 LSB
SET9 Start-up DAC error, code 9(1) RSET = 154 kΩ(2), IDAC_OUT = 22.6 µA 0 1 LSB
SET10 Start-up DAC error, code 10(1) RSET = 169 kΩ(2), IDAC_OUT = 18.8 µA 0 1 LSB
SET11 Start-up DAC error, code 11(1) RSET = 182 kΩ(2), IDAC_OUT = 15.1 µA 0 1 LSB
SET12 Start-up DAC error, code 12(1) RSET = 200 kΩ(2), IDAC_OUT = 11.3 µA 0 1 LSB
SET13 Start-up DAC error, code 13(1) RSET = 215 kΩ(2), IDAC_OUT = 7.59 µA 0 1 LSB
SET14 Start-up DAC error, code 14(1) RSET = 237 kΩ(2), IDAC_OUT = 3.80 µA 0 1 LSB
SET15 Start-up DAC error, code 15 RSET = 301 kΩ(2), IDAC_OUT = 0.06 µA 0 0 LSB
VID LOGIC INPUTS(3)
VIL Input voltage low 0.75 V
VIH Input voltage high 1.0 V
IIL Input current low –3.5 µA
IIH Input current high 5 µA
tDEGLITCH Input deglitch time 3.6 µs
t1 Input delay time VIDS rising edge 1 µs
t2 Input hold time VIDA, VIDB, VIDC valid VIDS falling edge 20 µs
t3 Input delay time VIDS falling edge 1 µs
t4 Input hold time VIDA, VIDB, VIDC valid VIDS rising edge 20 µs
t5 Delay to beginning of IDAC_OUT transition Measured from VIDS rising edge 6.3 10 µs
t6 IDAC_OUT transition time Time constant for exponential rise 40 µs
t7 Minimum hold time in 4-bit mode VIDA, VIDB, VIDC, VIDS 4.4 µs
(1) "+1" LSB implies a positive step in CODE. LSB is in reference to LSB_4.
(2) RSET is based on 1% E96 standard resistor values.
(3) For VID timing, see Figure 1.
(4) All hot and cold limits are specified by correlating the electrical characteristics to process and temperature variations and applying statistical process control.
(5) The junction temperature (TJ in °C) is calculated from the ambient temperature (TA in °C) and power dissipation (PD in Watts) as follows: TJ = TA + (PD × RθJA) where RθJA (in °C/W) is the package thermal impedance provided in the Thermal Information section.
Timing_Diagram.gifFigure 1. Timing Diagram for LM10011 Communications

6.6 Typical Characteristics

Unless otherwise specified, the following conditions apply: TJ = 25°C, VDD = 5 V. All graphs show junction temperature.
C010_SNVS822.pngFigure 2. Supply Current
Maximum Output Current VID = [000000]
C007_SNVS822.pngFigure 4. Output Compliance to Positive Rail
(VDD-VIDAC_OUT)
C006_SNVS822.pngFigure 6. IDAC_OUT Offset Current
VID = [111111]
C008_SNVS822.pngFigure 8. Enable (EN) Threshold
C001_SNVS822.pngFigure 10. Differential Non-Linearity
C003_SNVS822.pngFigure 3. Supply Current (EN LOW)
C005_SNVS822.pngFigure 5. Gain Error
C009_SNVS822.pngFigure 7. UVLO Thresholds
C002_SNVS822.pngFigure 9. Integral Non-Linearity