ZHCSIM4H April   2009  – November 2014 LM25011 , LM25011-Q1

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     典型应用
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings: LM25011
    3. 6.3 Handling Ratings: LM25011-Q1
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Thermal Information
    6. 6.6 Electrical Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Control Circuit Overview
      2. 7.3.2 On-Time Timer
      3. 7.3.3 Current Limit
      4. 7.3.4 Ripple Requirements
      5. 7.3.5 N-Channel Buck Switch and Driver
      6. 7.3.6 Soft-Start
      7. 7.3.7 Power Good Output (PGD)
      8. 7.3.8 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Function
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 LM25011 Example Circuit
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design with WEBENCH Tools
          2. 8.2.1.2.2 External Components
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Output Ripple Control
        1. 8.2.2.1 Option A: Lowest Cost Configuration
        2. 8.2.2.2 Option B: Intermediate VOUT Ripple Configuration
        3. 8.2.2.3 Option C: Minimum VOUT Ripple Configuration
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Power Dissipation
  11. 11器件和文档支持
    1. 11.1 使用 WEBENCH 工具创建定制设计
    2. 11.2 接收文档更新通知
    3. 11.3 相关链接
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 术语表
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Electrical Characteristics

Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over –40°C to 125°C junction temperature range unless otherwise stated. Unless otherwise stated, the following conditions apply: VIN = 12 V, RT = 50 kΩ.(1)(2)(3)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT (VIN PIN)
IIN Input operating current Non-switching, FB = 3 V 1200 1600 µA
UVLOVIN VIN undervoltage lock-out threshold VIN increasing 4.6 5.3 5.9 V
VIN undervoltage lock-out threshold hysteresis 200 mV
SWITCH CHARACTERISTICS
RDS(ON) Buck Switch RDS(ON) ITEST = 200 mA 0.3 0.6
UVLOGD Gate Drive UVLO BST-SW 2.4 3.4 4.4 V
UVLOGD Hysteresis 350 mV
Pre-charge switch voltage ITEST = 10 mA into SW pin 1.4 V
Pre-charge switch on-time 120 ns
SOFT-START PIN
VSS Pullup voltage 2.51 V
ISS Internal current source 10 µA
VSS-SH Shutdown threshold 70 140 mV
CURRENT LIMIT
VILIM Threshold voltage at CS –146 –130 –115 mV
CS bias current FB = 3 V –120 µA
CSG bias current FB = 3 V –35 µA
ON TIMER, RT PIN
tON - 1 On-time VIN = 12 V, RT = 50 kΩ 150 200 250 ns
tON - 2 On-time VIN = 32 V, RT = 50 kΩ 75 ns
tON - 3 On-time (current limit) LM25011 VIN = 12 V, RT = 50 kΩ 100 ns
tON - 3 On-time (current limit) LM25011A VIN = 12 V, RT = 50 kΩ 200 ns
tON - 4 On-time VIN = 12 V, RT = 301 kΩ 1020 ns
tON - 5 On-time VIN = 9 V, RT = 30.9 kΩ 130 171 215 ns
tON - 6 On-time VIN = 12 V, RT = 30.9 kΩ 105 137 170 ns
tON - 7 On-time VIN = 16 V, RT = 30.9 kΩ 79 109 142 ns
OFF TIMER
tOFF Minimum off-time (LM25011) 90 150 208 ns
Minimum off-time (LM25011A) 52 75 93
REGULATION COMPARATOR (FB PIN)
VREF FB regulation threshold SS pin = steady state 2.46 2.51 2.56 V
FB bias current FB = 3 V 100 nA
POWER GOOD (PGD PIN)
Threshold at FB, with respect to VREF FB increasing 91% 95%
Threshold hysteresis 3.3%
PGDVOL Low state voltage IPGD = 1 mA, FB = 0 V 125 180 mV
PGDLKG Off state leakage VPGD = 7 V, FB = 3 V 0.1 µA
THERMAL SHUTDOWN
TSD Thermal shutdown Junction temperature increasing 155 °C
Thermal shutdown hysteresis 20 °C
Current flow out of a pin is indicated as a negative number.
All hot and cold limits are specified by correlating the electrical characteristics to process and temperature variations and applying statistical process control.
The junction temperature (TJ in °C) is calculated from the ambient temperature (TA in °C) and power dissipation (PD in watts) as follows: TJ = TA + (PD × RθJA ) where RθJA (in °C/W) is the package thermal impedance provided in the Thermal Information section.