ZHCSX66 October   2024 LM251772

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 处理额定值
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 时序要求
    7. 6.7 典型特性
  8. 参数测量信息
  9. 详细说明
    1. 8.1 概述
    2. 8.2 功能方框图
    3. 8.3 特性说明
      1. 8.3.1  降压/升压控制方案
        1. 8.3.1.1 降压模式
        2. 8.3.1.2 升压模式
        3. 8.3.1.3 降压/升压模式
      2. 8.3.2  节能模式
      3. 8.3.3  参考系统
        1. 8.3.3.1 VIO LDO 和 nRST-PIN
      4. 8.3.4  电源电压选择 - VSMART 开关和选择逻辑
      5. 8.3.5  使能和欠压锁定
        1. 8.3.5.1 UVLO
      6. 8.3.6  内部 VCC 稳压器
        1. 8.3.6.1 VCC1 稳压器
        2. 8.3.6.2 VCC2 稳压器
      7. 8.3.7  误差放大器和控制
        1. 8.3.7.1 输出电压调节
        2. 8.3.7.2 输出电压反馈
        3. 8.3.7.3 电压调节环路
        4. 8.3.7.4 动态电压调节
      8. 8.3.8  输出电压放电
      9. 8.3.9  峰值电流传感器
      10. 8.3.10 短路 - 断续保护
      11. 8.3.11 电流监测器/限制器
        1. 8.3.11.1 概述
        2. 8.3.11.2 输出电流限制
        3. 8.3.11.3 输出电流监控器
      12. 8.3.12 振荡器频率选择
      13. 8.3.13 频率同步
      14. 8.3.14 输出电压跟踪
        1. 8.3.14.1 模拟电压跟踪
        2. 8.3.14.2 数字电压跟踪
      15. 8.3.15 斜率补偿
      16. 8.3.16 可配置软启动
      17. 8.3.17 驱动引脚
      18. 8.3.18 双随机展频 - DRSS
      19. 8.3.19 栅极驱动器
      20. 8.3.20 电缆压降补偿 (CDC)
      21. 8.3.21 CFG 引脚和 R2D 接口
      22. 8.3.22 高级监控功能
        1. 8.3.22.1  概述
        2. 8.3.22.2  BUSY
        3. 8.3.22.3  OFF
        4. 8.3.22.4  VOUT
        5. 8.3.22.5  IOUT
        6. 8.3.22.6  INPUT
        7. 8.3.22.7  TEMPERATURE
        8. 8.3.22.8  CML
        9. 8.3.22.9  其他
        10. 8.3.22.10 ILIM_OP
        11. 8.3.22.11 nFLT/nINT 引脚输出
        12. 8.3.22.12 状态字节
      23. 8.3.23 保护特性
        1. 8.3.23.1  热关断 (TSD)
        2. 8.3.23.2  过流保护
        3. 8.3.23.3  输出过压保护 1 (OVP1)
        4. 8.3.23.4  输出过压保护 2 (OVP2)
        5. 8.3.23.5  输入电压保护 (IVP)
        6. 8.3.23.6  输入电压调节 (IVR)
        7. 8.3.23.7  电源正常
        8. 8.3.23.8  自举欠压保护
        9. 8.3.23.9  自举过压钳位
        10. 8.3.23.10 CRC 校验
    4. 8.4 器件功能模式
      1. 8.4.1 概述
      2. 8.4.2 逻辑状态说明
    5. 8.5 编程
      1. 8.5.1 I2C 总线运行
      2. 8.5.2 时钟延展
      3. 8.5.3 数据传输格式
      4. 8.5.4 从定义的寄存器地址进行单次读取
      5. 8.5.5 从定义的寄存器地址开始进行顺序读取
      6. 8.5.6 对定义的寄存器地址进行单次写入
      7. 8.5.7 在定义的寄存器地址开始进行顺序写入
  10. LM251772 寄存器
  11. 10应用和实施
    1. 10.1 应用信息
    2. 10.2 典型应用
      1. 10.2.1 设计要求
      2. 10.2.2 详细设计过程
        1. 10.2.2.1  使用 WEBENCH 工具创建定制设计方案
        2. 10.2.2.2  频率
        3. 10.2.2.3  反馈分压器
        4. 10.2.2.4  电感器和电流检测电阻器选型
        5. 10.2.2.5  输出电容器
        6. 10.2.2.6  输入电容器
        7. 10.2.2.7  斜率补偿
        8. 10.2.2.8  UVLO 分频器
        9. 10.2.2.9  软启动电容器
        10. 10.2.2.10 MOSFET QH1 和 QL1
        11. 10.2.2.11 MOSFET QH2 和 QL2
        12. 10.2.2.12 环路补偿
        13. 10.2.2.13 外部元件选型
      3. 10.2.3 应用曲线
    3. 10.3 无线充电电源
    4. 10.4 具有电源路径的 USB PD 源
    5. 10.5 并行(多相)运行
  12. 11器件和文档支持
    1. 11.1 文档支持
      1. 11.1.1 相关文档
    2. 11.2 接收文档更新通知
    3. 11.3 支持资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 术语表
  13. 12修订历史记录
  14. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

I2C 总线运行

I2C 总线是控制器与一系列目标器件之间的通信链路。该链路是使用一条双线总线建立的,这条总线包含串行时钟信号 (SCL) 和串行数据信号 (SDA)。在串行数据线路用于控制器与目标终端之间双向数据通信的所有情况下,串行时钟均来源于控制器。每个器件都有一个开漏输出可用于在串行数据线路 (SDA) 上传输数据。为了在数据传输期间将漏极输出拉至高电平,必须在串行数据线路上放置一个外部上拉电阻器。该器件上配有一个目标 I2C 接口,这个接口支持以标准模式、快速模式和快速+ 模式运行,数据速率分别高达 100kbit/s、400kbit/s 和 1000kbit/s,并可实现与 I2C 标准 3.0 兼容的自动递增寻址。

如果 ADDR/SLOPE 引脚 I 拉至 GND,该器件的 7 位目标地址为 0x6A;如果该引脚连接到 VCC2,则为 0x6B

如下图所示,数据传输由一个来自控制器的起始位启动。在 SCL 信号的高电平期间,当 SDA 线路从高电平转换为低电平时,会识别到启动条件。接收到起始位后,该器件将在 SDA 输入端接收串行数据,并检查是否存在有效地址和控制信息。如果为器件设置了目标地址位,则器件会发出确认脉冲并准备接收寄存器地址和数据。在接收到停止条件或接收到发送给器件的数据字时,数据传输即完成。停止条件是指在 SCL 信号的高电平期间,SDA 输入从低电平转换到高电平。SDA 线路的所有其他转换必须在 SCL 信号的低电平期间完成。在接收到有效地址、子地址和数据字后,会发出确认。I2C 接口将通过寄存器地址实现自动定序,以便在一次给定的 I2C 传输中可以发送多个数据字。
LM251772 I2C 启动/停止/确认协议图 8-35 I2C 启动/停止/确认协议
LM251772 I2C 数据传输时序图 8-36 I2C 数据传输时序
LM251772 最长上升/下降时间的 I2C 数据传输时序图 8-37 最长上升/下降时间的 I2C 数据传输时序