ZHCSIJ1E June   1999  – July 2018 LM2574 , LM2574HV

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      典型应用(固定输出电压版本)
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics for All Output Voltage Versions
    6. 6.6  Electrical Characteristics – 3.3-V Version
    7. 6.7  Electrical Characteristics – 5-V Version
    8. 6.8  Electrical Characteristics – 12-V Version
    9. 6.9  Electrical Characteristics – 15-V Version
    10. 6.10 Electrical Characteristics – Adjustable Version
    11. 6.11 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Current Limit
      2. 7.3.2 Undervoltage Lockout
      3. 7.3.3 Delayed Start-Up
      4. 7.3.4 Adjustable Output, Low-Ripple Power Supply
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Active Mode
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Input Capacitor (CIN)
      2. 8.1.2 Inductor Selection
      3. 8.1.3 Inductor Ripple Current
      4. 8.1.4 Output Capacitor
      5. 8.1.5 Catch Diode
      6. 8.1.6 Output Voltage Ripple and Transients
      7. 8.1.7 Feedback Connection
      8. 8.1.8 ON/OFF Input
      9. 8.1.9 Additional Applications
        1. 8.1.9.1 Inverting Regulator
        2. 8.1.9.2 Negative Boost Regulator
    2. 8.2 Typical Applications
      1. 8.2.1 Fixed Output Voltage Applications
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2 Inductor Selection (L1)
          3. 8.2.1.2.3 Output Capacitor Selection (COUT)
          4. 8.2.1.2.4 Catch Diode Selection (D1)
          5. 8.2.1.2.5 Input Capacitor (CIN)
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Adjustable Output Voltage Applications
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Programming Output Voltage
          2. 8.2.2.2.2 Inductor Selection (L1)
          3. 8.2.2.2.3 Output Capacitor Selection (COUT)
          4. 8.2.2.2.4 Catch Diode Selection (D1)
          5. 8.2.2.2.5 Input Capacitor (CIN)
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Grounding
    4. 10.4 Thermal Considerations
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 第三方米6体育平台手机版_好二三四免责声明
      2. 11.1.2 使用 WEBENCH® 工具创建定制设计
      3. 11.1.3 器件命名规则
        1. 11.1.3.1  降压稳压器
        2. 11.1.3.2  降压/升压稳压器
        3. 11.1.3.3  占空比 (D)
        4. 11.1.3.4  环流二极管或导流二极管
        5. 11.1.3.5  电容器等效串联电阻 (ESR)
        6. 11.1.3.6  等效串联电感 (ESL)
        7. 11.1.3.7  输出纹波电压
        8. 11.1.3.8  电容器纹波电流
        9. 11.1.3.9  待机静态电流 (ISTBY)
        10. 11.1.3.10 电感器纹波电流 (ΔiIND)
        11. 11.1.3.11 连续与非连续模式运行
        12. 11.1.3.12 电感器饱和
        13. 11.1.3.13 运算伏特微秒常数 (E × Top)
    2. 11.2 文档支持
      1. 11.2.1 相关文档
    3. 11.3 接收文档更新通知
    4. 11.4 社区资源
    5. 11.5 商标
    6. 11.6 静电放电警告
    7. 11.7 术语表
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Inverting Regulator

Figure 20 shows a LM2574-12 in a buck-boost configuration to generate a negative 12-V output from a positive input voltage. This circuit bootstraps the ground pin of the regulator to the negative output voltage, then by grounding the feedback pin, the regulator senses the inverted output voltage and regulates it to −12 V.

LM2574 LM2574HV 01139419_75.png
Note: Pin numbers are for the 8-pin PDIP package.
Figure 20. Inverting Buck-Boost Develops, 12 V

For an input voltage of 8 V or more, the maximum available output current in this configuration is approximately 100 mA. At lighter loads, the minimum input voltage required drops to approximately 4.7 V.

The switch currents in this buck-boost configuration are higher than in the standard buck-mode design, thus lowering the available output current. Also, the start-up input current of the buck-boost converter is higher than the standard buck-mode regulator, and this may overload an input power source with a current limit less than
0.6 A. Using a delayed turnon or an undervoltage lockout circuit (described in Negative Boost Regulator) would allow the input voltage to rise to a high enough level before the switcher would be allowed to turn on.

Because of the structural differences between the buck and the buck-boost regulator topologies, the design procedure can not be used to select the inductor or the output capacitor. The recommended range of inductor values for the buck-boost design is between 68 μH and 220 μH, and the output capacitor values must be larger than what is normally required for buck designs. Low-input voltages or high-output currents require a large value output capacitor (in the thousands of micro Farads).

The peak inductor current, which is the same as the peak switch current, can be calculated from Equation 6.

Equation 6. LM2574 LM2574HV eq_ip_snvs104.gif

where

  • fosc = 52 kHz. Under normal continuous inductor current operating conditions,
  • the minimum VIN represents the worst case. Select an inductor that is rated for the peak current anticipated.

Also, the maximum voltage appearing across the regulator is the absolute sum of the input and output voltage. For a −12-V output, the maximum input voltage for the LM2574 is 28 V, or 48 V for the LM2574HV.