SNVS082E December   2001  – May 2016 LM2593HV

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Electrical Characteristics - 3.3-V Version
    7. 6.7 Electrical Characteristics - 5-V Version
    8. 6.8 Electrical Characteristics - Adjustable Voltage Version
    9. 6.9 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Test Circuits
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Undervoltage Lockout
      2. 8.3.2 Negative Voltage Charge Pump
      3. 8.3.3 Shutdown/Soft-Start
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Active Mode
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Feedforward Capacitor, CFF
      2. 9.1.2 Input Capacitor, CIN
      3. 9.1.3 Output Capacitor, COUT
      4. 9.1.4 Catch Diode
      5. 9.1.5 lnverting Regulator
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductors Selection Procedure
          1. 9.2.2.1.1 Example 1: VIN ≤ 40 V, 5-V Version, VIN = 24 V, Output = 5 V at 1 A
          2. 9.2.2.1.2 Example 2: VIN > 40 V, 5-V version, VIN = 48 V, Output = 5 V at 1.5 A
          3. 9.2.2.1.3 Example 3: VIN ≤ 40 V, Adjustable Version, VIN = 20 V, Output = 10 V at 2 A
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Maximum supply voltage, VIN 63 V
SD/SS pin input voltage(2) 6 V
Delay pin voltage(2) 1.5 V
Flag pin voltage –0.3 45 V
Feedback pin voltage –0.3 25 V
Output voltage to ground, steady-state –1 V
Power dissipation Internally limited
Lead temperature S package Vapor phase (60 s) 215 °C
Infrared (10 s) 245
T package, soldering (10 s) 260
Maximum junction temperature 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Voltage internally clamped. If clamp voltage is exceeded, limit current to a maximum of 1 mA.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2) ±2000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) The human body model is a 100-pF capacitor discharged through a 1.5-k resistor into each pin.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Supply voltage 4.5 60 V
TJ Temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) LM2593HV UNIT
NDZ (TO-220) KTW (TO-263)
7 PINS 7 PINS
RθJA Junction-to-ambient thermal resistance 50(2) 50(3) °C/W
30(4)
20(5)
RθJC(top) Junction-to-case (top) thermal resistance 2 2 °C/W
RθJB Junction-to-board thermal resistance °C/W
ψJT Junction-to-top characterization parameter °C/W
ψJB Junction-to-board characterization parameter °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) Junction to ambient thermal resistance (no external heat sink) for the package mounted TO-220 package mounted vertically, with the leads soldered to a printed-circuit board with (1 oz) copper area of approximately 1 in2.
(3) Junction to ambient thermal resistance with the TO-263 package tab soldered to a single-sided printed-circuit board with 0.5 in2 of (1 oz) copper area.
(4) Junction to ambient thermal resistance with the TO-263 package tab soldered to a single-sided printed-circuit board with 2.5 in2 of (1 oz) copper area.
(5) Junction to ambient thermal resistance with the TO-263 package tab soldered to a double-sided printed-circuit board with 3 in2 of (1 oz) copper area on the LM2593HVS side of the board, and approximately 16 in2 of copper on the other side of the printed-circuit board.

6.5 Electrical Characteristics

TJ = 25°C, VIN = 12 V for the 3.3-V, 5-V, and adjustable versions, and ILOAD = 500 mA (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
Ib Feedback bias current Adjustable version only, VFB = 1.3 V 50 10 100 nA
fO Oscillator frequency(3) TJ = 25°C 127 150 173 kHz
TJ = –40°C to 125°C 110 173
VSAT Saturation voltage IOUT = 2 A; no diode, inductor or capacitor connected to output pin(4); Feedback pin removed from output and connected to 0 V to force the output transistor switch ON(5) TJ = 25°C 1.1 1.3 V
TJ = –40°C to 125°C 1.4
DC Max duty cycle (ON) Feedback pin removed from output and connected to 0 V to force the output transistor switch ON 100%
Min duty cycle (OFF) Feedback pin removed from output and connected to 12 V for the 3.3-V, 5-V, and the adjustable versions to force the output transistor switch OFF 0%
ICLIM Switch current limit Peak current; no diode, inductor or capacitor connected to output pin; Feedback pin removed from output and connected to 0 V to force the output transistor switch ON TJ = 25°C 2.4 3 3.7 A
TJ = –40°C to 125°C 2.3 4
IL Output leakage current Feedback pin removed from output and connected to 12 V for the 3.3-V, 5-V, and the adjustable version to force the output transistor switch OFF; VIN = 60 V, output = 0 V,
output = −1 V
50 5 30 mA
IQ Operating quiescent current SD and SS pin open, Feedback pin removed from output and connected to 12 V for the 3.3-V, 5-V, and the adjustable version to force the output transistor switch OFF 5 10 mA
ISTBY Standby quiescent current SD and SS pin = 0 V,
VIN = 60 V
TJ = 25°C 90 200 µA
TJ = –40°C to 125°C 250
SHUTDOWN AND SOFT-START CONTROL
VSD Shutdown threshold voltage Low (shutdown mode) 1.3 0.6 V
High (soft-start mode) 2
VSS Soft-start voltage VOUT = 20% of nominal output voltage 2 V
VOUT = 100% of nominal output voltage 3
ISD Shutdown current VSHUTDOWN = 0.5 V 5 10 µA
ISS Soft-start current VSoft-start = 2.5 V 1.5 5 µA
Regulator dropout detector Low (flag ON) 96%
Threshold voltage Low (flag ON) 92% 98%
VFSAT Flag output saturation voltage ISINK = 3 mA, VDELAY = 0.5 V 0.3 µA
IFL Flag output leakage current VFLAG = 60 V 0.7 0.3 1 V
Delay pin threshold voltage Low (flag ON), high (flag OFF) and VOUT regulated 1.21 1.25 1.29 V
Delay pin source current VDELAY = 0.5 V 3 6 µA
Delay pin saturation Low (flag ON) 350 70 400 mV
(1) All limits specified at room temperature unless otherwise noted. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at 25°C and represent the most likely norm.
(3) The switching frequency is reduced when the second stage current limit is activated. The amount of reduction is determined by the severity of current overload.
(4) No diode, inductor or capacitor connected to output pin.
(5) Feedback pin removed from output and connected to 0 V to force the output transistor switch ON.

6.6 Electrical Characteristics – 3.3-V Version

TJ = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SYSTEM PARAMETERS
VOUT Output voltage 4.75 V ≤ VIN ≤ 60 V,
0.2 A ≤ ILOAD ≤ 2 A
TJ = 25°C 3.168 3.3 3.432 V
TJ = –40°C to 125°C 3.135 3.465
η Efficiency VIN = 12 V, ILOAD = 2 A 76%

6.7 Electrical Characteristics – 5-V Version

TJ = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V Output voltage 7 V ≤ VIN ≤ 60 V,
0.2 A ≤ILOAD ≤ 2 A
TJ = 25°C 4.8 5 5.2 V
TJ = –40°C to 125°C 4.75 5.25
η Efficiency VIN = 12 V, ILOAD = 2 A 81%

6.8 Electrical Characteristics – Adjustable Voltage Version

TJ = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VFB Feedback voltage 4.5 V ≤ VIN ≤ 60 V,
0.2 A ≤ ILOAD ≤ 2 A,
VOUT programmed for 3 V
(see Test Circuits)
TJ = 25°C 1.193 1.23 1.267 V
TJ = –40°C to 125°C 1.18 1.28
η Efficiency VIN = 12 V, VOUT = 3 V, ILOAD = 2 A 75%

6.9 Typical Characteristics

LM2593HV graph_01_snvs082.gif
Figure 1. Normalized Output Voltage
LM2593HV graph_03_snvs082.gif
Figure 3. Efficiency
LM2593HV graph_05_snvs082.gif
Figure 5. Switch Current Limit
LM2593HV graph_07_snvs082.gif
Figure 7. Operating Quiescent Current
LM2593HV graph_09_snvs082.gif
Figure 9. Minimum Operating Supply Voltage
LM2593HV graph_11_snvs082.gif
Figure 11. Flag Saturation Voltage
LM2593HV graph_13_snvs082.gif
Figure 13. Soft-Start
LM2593HV graph_15_snvs082.gif
Figure 15. Delay Pin Current
LM2593HV graph_17_snvs082.gif
Figure 17. Shutdown/Soft-Start Threshold Voltage
LM2593HV graph_19_snvs082.gif
Horizontal Time Base: 2 µs/div.
VIN = 20 V, VOUT = 5 V, ILOAD = 2 A,
L = 32 µH, COUT = 220 µF, COUT ESR = 50 mΩ
Output Pin Voltage, 10 V/div.
Inductor Current, 1 A/div.
Output Ripple Voltage, 50 mV/div.
Figure 19. Continuous Mode Switching Waveforms
LM2593HV graph_21_snvs082.gif
Horizontal Time Base: 50 µs/div.
VIN = 20 V, VOUT = 5 V, ILOAD = 500 mA to 2 A,
L = 32 µH, COUT = 220 µF, COUT ESR = 50 mΩ
Output Voltage, 100 mV/div. (AC)
500-mA to 2-A Load Pulse
Figure 21. Load Transient Response
for Continuous Mode
LM2593HV graph_02_snvs082.gif
Figure 2. Line Regulation
LM2593HV graph_04_snvs082.gif
Figure 4. Switch Saturation Voltage
LM2593HV graph_06_snvs082.gif
Figure 6. Dropout Voltage
LM2593HV graph_08_snvs082.gif
Figure 8. Shutdown Quiescent Current
LM2593HV graph_10_snvs082.gif
Figure 10. Feedback Pin Bias Current
LM2593HV graph_12_snvs082.gif
Figure 12. Switching Frequency
LM2593HV graph_14_snvs082.gif
Figure 14. Shutdown/Soft-Start Current
LM2593HV graph_16_snvs082.gif
Figure 16. Soft-Start Response
LM2593HV graph_18_snvs082.gif
Figure 18. Internal Gain-Phase Characteristics
LM2593HV graph_20_snvs082.gif
Horizontal Time Base: 2 µs/div.
VIN = 20 V, VOUT = 5 V, ILOAD = 500 mA,
L = 10 µH, COUT = 330 µF, COUT ESR = 50 mΩ
Output Pin Voltage, 10 V/div.
Inductor Current, 0.5 A/div.
Output Ripple Voltage, 100 mV/div.
Figure 20. Discontinuous Mode Switching Waveforms
LM2593HV graph_22_snvs082.gif
Horizontal Time Base: 200 µs/div.
VIN = 20 V, VOUT = 5 V, ILOAD = 500 mA to 2 A,
L = 10 µH, COUT = 330 µF, COUT ESR = 50 mΩ
Output Voltage, 100 mV/div. (AC)
500-mA to 2-A Load Pulse
Figure 22. Load Transient Response
for Discontinuous Mode