SNVS029K March   2000  – February 2017 LM2678

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - 3.3 V
    6. 6.6  Electrical Characteristics - 5 V
    7. 6.7  Electrical Characteristics - 12 V
    8. 6.8  Electrical Characteristics - Adjustable
    9. 6.9  Electrical Characteristics - All Output Voltage Versions
    10. 6.10 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Switch Output
      2. 7.3.2 Input
      3. 7.3.3 C Boost
      4. 7.3.4 Ground
      5. 7.3.5 Feedback
      6. 7.3.6 ON/OFF
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Active Mode
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Design Considerations
      2. 8.1.2 Inductor
      3. 8.1.3 Output Capacitor
      4. 8.1.4 Input Capacitor
      5. 8.1.5 Catch Diode
      6. 8.1.6 Boost Capacitor
      7. 8.1.7 Additional Application Information
    2. 8.2 Typical Application
      1. 8.2.1 All Output Voltage Versions
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2 Capacitor Selection Guides
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Fixed Output Voltage Design Example
        1. 8.2.2.1 Detailed Design Procedure
          1. 8.2.2.1.1 Capacitor Selection
      3. 8.2.3 Adjustable Output Design Example
        1. 8.2.3.1 Detailed Design Procedure
          1. 8.2.3.1.1 Capacitor Selection
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Custom Design With WEBENCH® Tools
    2. 11.2 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 VSON Package Devices

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Detailed Description

Overview

The LM2678 provides all of the active functions required for a step-down (buck) switching regulator. The internal power switch is a DMOS power MOSFET to provide power supply designs with high current capability, up to 5 A, and highly efficient operation.

The LM2678 is part of the SIMPLE SWITCHER® family of power converters. The design support WEBENCH, can also be used to provide instant component selection, circuit performance calculations for evaluation, a bill of materials component list and a circuit schematic for LM2678.

Functional Block Diagram

LM2678 10088606.png

Feature Description

Switch Output

This is the output of a power MOSFET switch connected directly to the input voltage. The switch provides energy to an inductor, an output capacitor and the load circuitry under control of an internal pulse-width-modulator (PWM). The PWM controller is internally clocked by a fixed 260-kHz oscillator. In a standard step-down application the duty cycle (Time ON/Time OFF) of the power switch is proportional to the ratio of the power supply output voltage to the input voltage. The voltage on pin 1 switches between Vin (switch ON) and below ground by the voltage drop of the external Schottky diode (switch OFF).

Input

The input voltage for the power supply is connected to pin 2. In addition to providing energy to the load the input voltage also provides bias for the internal circuitry of the LM2678. For ensured performance the input voltage must be in the range of 8 V to 40 V. For best performance of the power supply the input pin must always be bypassed with an input capacitor located close to pin 2.

C Boost

A capacitor must be connected from pin 3 to the switch output, pin 1. This capacitor boosts the gate drive to the internal MOSFET above VIN to fully turn it ON. This minimizes conduction losses in the power switch to maintain high efficiency. The recommended value for C Boost is 0.01 μF.

Ground

This is the ground reference connection for all components in the power supply. In fast-switching, high-current applications such as those implemented with the LM2678, TI recommends that a broad ground plane be used to minimize signal coupling throughout the circuit.

Feedback

This is the input to a two-stage high gain amplifier, which drives the PWM controller. It is necessary to connect pin 6 to the actual output of the power supply to set the DC output voltage. For the fixed output devices (3.3-V, 5-V and 12-V outputs), a direct wire connection to the output is all that is required as internal gain setting resistors are provided inside the LM2678. For the adjustable output version two external resistors are required to set the DC output voltage. For stable operation of the power supply it is important to prevent coupling of any inductor flux to the feedback input.

ON/OFF

This input provides an electrical ON/OFF control of the power supply. Connecting this pin to ground or to any voltage less than 0.8 V is completely turn OFF the regulator. The current drain from the input supply when OFF is only 50 μA. Pin 7 has an internal pullup current source of approximately 20 μA and a protection clamp Zener diode of 7 V to ground. When electrically driving the ON/OFF pin the high voltage level for the ON condition should not exceed the 6 V absolute maximum limit. When ON/OFF control is not required pin 7 should be left open circuited.

Device Functional Modes

Shutdown Mode

The ON/OFF pin provides electrical ON and OFF control for the LM2678. When the voltage of this pin is lower than 1.4 V, the device enters shutdown mode. The typical standby current in this mode is 45 μA.

Active Mode

When the voltage of the ON/OFF pin is higher than 1.4 V, the device starts switching and the output voltage rises until it reaches a normal regulation voltage.