SNVS070D March   2000  – September 2016 LM2765

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Test Circuit
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Circuit Description
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Voltage Doubler
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Requirements
          1. 9.2.1.2.1 Positive Voltage Doubler
          2. 9.2.1.2.2 Capacitor Selection
          3. 9.2.1.2.3 Paralleling Devices
          4. 9.2.1.2.4 Cascading Devices
          5. 9.2.1.2.5 Regulating VOUT
        3. 9.2.1.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Supply voltage (V+ to GND or V+ to OUT) 5.8 V
SD (GND − 0.3 V) (V+ + 0.3 V)
OUT continuous output current 40 mA
Output short-circuit duration to GND(3) 1 sec
Continuous power dissipation (TA = 25°C)(4)
600 mW
TJ-MAX(4) 150 °C
Storage temperature, Tstg −65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
(3) OUT may be shorted to GND for one second without damage. However, shorting OUT to V+ may damage the device and must be avoided. Also, for temperatures above 85°C, OUT must not be shorted to GND or V+, or device may be damaged.
(4) The maximum allowable power dissipation is calculated by using PD-MAX = (TJ-MAX − TA)/RθJA, where TJ-MAX is the maximum junction temperature, TA is the ambient temperature, and RθJA is the junction-to-ambient thermal resistance of the specified package.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Machine model 200 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Ambient temperature –40 85 °C
Junction temperature –40 100 °C

6.4 Thermal Information

THERMAL METRIC(1) LM2765 UNIT
DBV (SOT-23)
6 PINS
RθJA Junction-to-ambient thermal resistance 185.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 131.5 °C/W
RθJB Junction-to-board thermal resistance 34.8 °C/W
ψJT Junction-to-top characterization parameter 21.6 °C/W
ψJB Junction-to-board characterization parameter 34.1 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

MIN and MAX limits apply over the full operating temperature range. Unless otherwise specified: TJ = 25°C, V+ = 5 V,
C1 = C2 = 3.3 μF.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V+ Supply voltage 1.8 5.5 V
IQ Supply current No load 130 450 µA
ISD Shutdown supply current 0.1 0.5 µA
TA = 85°C 0.2
VSD Shutdown pin input voltage Shutdown mode 2 V
Normal operation 0.6
IL Output current 2.5 V ≤ VIN ≤ 5.5 V 20 mA
1.8 V ≤ VIN ≤ 2.5 V 10
ROUT Output resistance(2) IL = 20 mA 20 40 Ω
ƒOSC Oscillator frequency See(3) 40 100 200 kHz
ƒSW Switching frequency See(3) 20 50 100 kHz
PEFF Power efficiency RL (1 kΩ) between GND and OUT 92%
VOEFF Voltage conversion efficiency No load 99.96%
(1) In the test circuit, capacitors C1 and C2 are 3.3-µF, 0.3-Ω maximum ESR capacitors. Capacitors with higher ESR increase output resistance, reduce output voltage, and efficiency.
(2) Specified output resistance includes internal switch resistance and capacitor ESR. See the details in Application and Implementation for simple negative voltage converter.
(3) The output switches operate at one half of the oscillator frequency, ƒOSC = 2ƒSW.

6.6 Typical Characteristics

(Circuit of Test Circuit, VIN = 5V, TA = 25°C unless otherwise specified)
LM2765 10128104.png
Figure 1. Supply Current vs Supply Voltage
LM2765 10128105.png
Figure 2. Output Resistance vs Capacitance
LM2765 10128106.png
Figure 3. Output Resistance vs Supply Voltage
LM2765 10128108.png
Figure 5. Output Voltage vs Load Current
LM2765 10128111.png
Figure 7. Switching Frequency vs Temperature
LM2765 10128107.png
Figure 4. Output Resistance vs Temperature
LM2765 10128110.png
Figure 6. Switching Frequency vs Supply Voltage
LM2765 10128112.png
Figure 8. Output Ripple vs Load Current