SNVS071C March   2000  – September 2015 LM2766

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Test Circuit
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Test Circuit
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Positive Voltage Doubler
        2. 9.2.2.2 Capacitor Selection
        3. 9.2.2.3 Paralleling Devices
        4. 9.2.2.4 Cascading Devices
        5. 9.2.2.5 Regulating VOUT
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

8 Detailed Description

8.1 Overview

The LM2766 CMOS charge-pump voltage converter operates as a voltage doubler for an input voltage in the range of 1.8 V to 5.5 V. Two low-cost capacitors and a diode (needed during start-up) are used in this circuit.

8.2 Functional Block Diagram

LM2766 blockdiag_snvs071.gif

8.3 Feature Description

8.3.1 Test Circuit

The LM2766 contains four large CMOS switches which are switched in a sequence to double the input supply voltage. Energy transfer and storage are provided by external capacitors. Figure 10 illustrates the voltage conversion scheme. When S2 and S4 are closed, C1 charges to the supply voltage V+. During this time interval, switches S1 and S3 are open. In the next time interval, S2 and S4 are open; at the same time, S1 and S3 are closed, the sum of the input voltage V+ and the voltage across C1 gives the 2 V+ output voltage when there is no load. The output voltage drop when a load is added is determined by the parasitic resistance (Rds(on) of the MOSFET switches and the ESR of the capacitors) and the charge transfer loss between capacitors. See Application and Implementation for further details.

LM2766 10128214.png Figure 10. Voltage Doubling Principle

8.4 Device Functional Modes

8.4.1 Shutdown Mode

A shutdown (SD) pin is available to disable the device and reduce the quiescent current to 0.1 µA. In normal operating mode, the SD pin is connected to V+. The device can be brought into the shutdown mode by applying to the SD pin a voltage less than 20% of the V+ pin voltage.