SNVS071C March   2000  – September 2015 LM2766

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Test Circuit
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Test Circuit
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Positive Voltage Doubler
        2. 9.2.2.2 Capacitor Selection
        3. 9.2.2.3 Paralleling Devices
        4. 9.2.2.4 Cascading Devices
        5. 9.2.2.5 Regulating VOUT
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Supply voltage (V+ to GND, or V+ to VOUT) 5.8 V
SD (GND − 0.3) (V+ + 0.3) V
VOUT continuous output current 40 mA
Output short-circuit duration to GND(3) 1 sec
Continuous power dissipation (TA = 25°C)(4)
600 mW
TJMax(4) 150 °C
Storage temperature, Tstg −65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, contact the TI Sales Office/ Distributors for availability and specifications.
(3) VOUT may be shorted to GND for one second without damage. For temperatures above 85°C, VOUT must not be shorted to GND or device may be damaged.
(4) The maximum allowable power dissipation is calculated by using PDMax = (TJMax − TA)/RθJA, where TJMax is the maximum junction temperature, TA is the ambient temperature, and RθJA is the junction-to-ambient thermal resistance of the specified package.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Machine model (CDM), per JEDEC specification JESD22-C101(2) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Junction temperature −40 100 °C
Ambient temperature −40 85 °C
Lead temperature (soldering, 10 sec.) 240 °C

6.4 Thermal Information

THERMAL METRIC(1) LM2766 UNIT
DBV (SOT-23)
6 PINS
RθJA Junction-to-ambient thermal resistance 210 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Unless otherwise specified, typical limits are for TJ = 25°C, minimum and maximum limits apply over the full operating temperature range: V+ = 5 V, C1 = C2 = 10 μF.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V+ Supply voltage 1.8 5.5 V
IQ Supply current No load 350 950 µA
ISD Shutdown supply current TJ = 25°C 0.1 0.5 µA
TA = 85°C 0.2
VSD Shutdown pin input voltage 0.6 V
2
IL Output current 2.5 V ≤ VIN ≤ 5.5 V 20 mA
1.8 V ≤ VIN ≤ 2.5 V 10
ROUT Output resistance(2) IL = 15 mA 20 55 Ω
ƒOSC Oscillator frequency See(3) 220 400 700 kHz
ƒSW Switching frequency See(3) 110 200 350 kHz
PEFF Power efficiency IL = 20 mA to GND 94%
VOEFF Voltage conversion efficiency No load 99.96%
(1) In the test circuit, capacitors C1 and C2 are 10-µF, 0.3-Ω maximum ESR capacitors. Capacitors with higher ESR may increase output resistance, and reduce output voltage and efficiency.
(2) Specified output resistance includes internal switch resistance and capacitor ESR. See the details in Application and Implementation for positive voltage doubler.
(3) The output switches operate at one half of the oscillator frequency, ƒOSC = 2 × ƒSW.

6.6 Typical Characteristics

(Circuit of Typical Voltage Doubler Application, VIN = 5 V, TA = 25°C unless otherwise specified)
LM2766 10128204.png
Figure 1. Supply Current vs Supply Voltage
LM2766 10128206.png
Figure 3. Output Resistance vs Supply Voltage
LM2766 10128208.png
Figure 5. Output Voltage vs Load Current
LM2766 10128211.png
Figure 7. Switching Frequency vs Temperature
LM2766 10128205.png
Figure 2. Output Resistance vs Capacitance
LM2766 10128207.png
Figure 4. Output Resistance vs Temperature
LM2766 10128210.png
Figure 6. Switching Frequency vs Supply Voltage
LM2766 10128212.png
Figure 8. Output Ripple vs Load Current