SNVSB96 July 2019 LM3424-Q1
PRODUCTION DATA.
The LM3424-Q1 has programmable slope compensation in order to provide stability over a wide range of operating conditions. Without slope compensation, a well-known condition called current mode instability (or sub-harmonic oscillation) can result if there is a perturbation of the MOSFET current sense voltage at the IS pin, due to noise or a some type of transient.
Through a mathematical / geometrical analysis of the inductor current (IL) and the corresponding control current (IC, it can be shown that if D < 0.5, the effect of the perturbation will decrease each switching cycle and the system will remain stable. However, if D > 0.5 then the perturbation will grow as shown in Figure 23, eventually causing a "period doubling" effect where the effect of the perturbation remains, yielding current mode instability.
Looking at , the positive PWM comparator input is the IS voltage, a mirror of IL during tON, plus a typical 900 mV offset. The negative input of the PWM comparator is the COMP pin which is proportional to IC, the threshold at which the main MOSFET (Q1) is turned off.
The LM3424-Q1 mitigates current mode instability by implementing an aritifical ramp (commonly called slope compensation) which is summed with the sensed MOSFET current at the IS pin as shown in . This combined signal is compared to the COMP pin to generate the PWM signal. An increase in the ramp that is added to the sense voltage will increase the maximum achievable duty cycle. It should be noted that as the artificial ramp is increased more and more, the control method approaches standard voltage mode control and the benefits of current mode control are reduced.
To program the slope compensation, an external resistor, RSLP, is connected from SLOPE to GND. This sets the slope of the artificial ramp that is added to the MOSFET current sense voltage. A smaller RSLP value will increase the slope of the added ramp. A simple calculation is suggested to ensure any duty cycle is attainable while preventing the addition of excessive ramp. This method requires the artifical ramp slope (MA) to be equal to half the inductor slope during tOFF: