SNVS616H April   2009  – July 2015 LM3429 , LM3429-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Current Regulators
      2. 7.3.2  Predictive Off-Time (PRO) Control
      3. 7.3.3  Switching Frequency
      4. 7.3.4  Average LED Current
      5. 7.3.5  Analog Dimming
      6. 7.3.6  Current Sense and Current Limit
      7. 7.3.7  Control Loop Compensation
      8. 7.3.8  Output Overvoltage Lockout (OVLO)
      9. 7.3.9  Input Undervoltage Lockout (UVLO)
      10. 7.3.10 PWM Dimming
      11. 7.3.11 Startup Regulator (VCC LDO)
      12. 7.3.12 Thermal Shutdown
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Inductor
      2. 8.1.2 LED Dynamic Resistance (rD)
      3. 8.1.3 Output Capacitor
      4. 8.1.4 Input Capacitors
      5. 8.1.5 N-Channel MosFET (NFET)
      6. 8.1.6 Re-Circulating Diode
    2. 8.2 Typical Applications
      1. 8.2.1 Basic Topology Schematics
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1  Operating Point
          2. 8.2.1.2.2  Switching Frequency
          3. 8.2.1.2.3  Average LED Current
          4. 8.2.1.2.4  Inductor Ripple Current
          5. 8.2.1.2.5  LED Ripple Current
          6. 8.2.1.2.6  Peak Current Limit
          7. 8.2.1.2.7  Loop Compensation
          8. 8.2.1.2.8  Input Capacitance
          9. 8.2.1.2.9  NFET
          10. 8.2.1.2.10 Diode
          11. 8.2.1.2.11 Output OVLO
          12. 8.2.1.2.12 Input UVLO
          13. 8.2.1.2.13 PWM Dimming Method
          14. 8.2.1.2.14 Analog Dimming Method
      2. 8.2.2 Buck-Boost Application - 6 LEDs at 1 A
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1  Operating Point
          2. 8.2.2.2.2  Switching Frequency
          3. 8.2.2.2.3  Average LED Current
          4. 8.2.2.2.4  Inductor Ripple Current
          5. 8.2.2.2.5  Output Capacitance
          6. 8.2.2.2.6  Peak Current Limit
          7. 8.2.2.2.7  Loop Compensation
          8. 8.2.2.2.8  Input Capacitance
          9. 8.2.2.2.9  NFET
          10. 8.2.2.2.10 Diode
          11. 8.2.2.2.11 Input UVLO
          12. 8.2.2.2.12 Output OVLO
        3. 8.2.2.3 Application Curve
      3. 8.2.3 Boost PWM Dimming Application - 9 LEDs at 1 A
        1. 8.2.3.1 Detailed Design Procedure
      4. 8.2.4 Buck-Boost Analog Dimming Application - 4 LEDs at 2A
        1. 8.2.4.1 Detailed Design Procedure
      5. 8.2.5 Boost Analog Dimming Application - 12 LEDs at 700 mA
        1. 8.2.5.1 Detailed Design Procedure
      6. 8.2.6 Buck-Boost PWM Dimming Application - 6 LEDs at 500 mA
        1. 8.2.6.1 Detailed Design Procedure
      7. 8.2.7 Buck Application - 3 LEDS at 1.25 A
        1. 8.2.7.1 Detailed Design Procedure
      8. 8.2.8 Buck-Boost Thermal Foldback Application - 8 LEDs at 2.5 A
        1. 8.2.8.1 Detailed Design Procedure
      9. 8.2.9 SEPIC Application - 5 LEDs at 750 mA
        1. 8.2.9.1 Detailed Design Procedure
  9. Power Supply Recommendations
    1. 9.1 Input Supply Current Limit
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Related Links
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

10 Layout

10.1 Layout Guidelines

The performance of any switching regulator depends as much upon the layout of the PCB as the component selection. Following a few simple guidelines will maximimize noise rejection and minimize the generation of EMI within the circuit.

Discontinuous currents are the most likely to generate EMI; therefore, take care when routing these paths. The main path for discontinuous current in the LM3429 buck regulator contains the input capacitor (CIN), the recirculating diode (D1), the N-channel MosFET (Q1), and the switch sense resistor (RLIM). In the LM3429 boost and buck-boost regulators, the discontinuous current flows through the output capacitor (CO), D1, Q1, and RLIM. In either case, this loop should be kept as small as possible and the connections between all the components should be short and thick to minimize parasitic inductance. In particular, the switch node (where L1, D1 and Q1 connect) should be just large enough to connect the components. To minimize excessive heating, large copper pours can be placed adjacent to the short current path of the switch node.

The RCT, COMP, CSH, IS, HSP and HSN pins are all high-impedance inputs which couple external noise easily, therefore the loops containing these nodes should be minimized whenever possible.

In some applications the LED or LED array can be far away (several inches or more) from the LM3429, or on a separate PCB connected by a wiring harness. When an output capacitor is used and the LED array is large or separated from the rest of the regulator, the output capacitor should be placed close to the LEDs to reduce the effects of parasitic inductance on the AC impedance of the capacitor.

10.2 Layout Example

LM3429 LM3429-Q1 LM3429_Layout.gifFigure 38. LM3429 Layout Guideline