SNVS011H June   1999  – September 2015 LM3480

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: LM3480-3.3, LM3480-5
    6. 6.6 Electrical Characteristics: LM3480-12, LM3480-15
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 3.3-V, 5-V, 12-V, and 15-V Versions Available
      2. 7.3.2 1.2-V Ensured Maximum Dropout
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operation with VIN = 5 V
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 External Capacitors
          1. 8.2.2.1.1 Output Capacitor
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Community Resources
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings(1)(2)

MIN MAX UNIT
Input voltage (IN to GND) –0.3 35 V
Power dissipation(3) Internally Limited
Junction temperature(3) –40 150 °C
Storage temperature, Tstg −65 150 °C
(1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Recommended Operating Conditions are conditions under which operation of the device is ensured. Recommended operating ratings do not imply ensured performance limits. For ensured performance limits and associated test conditions, see the Electrical Characteristics: LM3480-3.3, LM3480-5.
(2) If Military- or Aerospace-specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.
(3) The Absolute Maximum power dissipation depends on the ambient temperature and can be calculated using P = (TJ – TA) / RθJA where TJ is the junction temperature, TA is the ambient temperature, and RθJA is the junction-to-ambient thermal resistance. The 370-mW rating results from substituting the Absolute Maximum junction temperature, 150°C for TJ, 50°C for TA, and 269.6°C/W for RθJA. More power can be safely dissipated at lower ambient temperatures. Less power can be safely dissipated at higher ambient temperatures. The Absolute Maximum power dissipation can be increased by 3.7 mW for each °C below 50°C ambient. It must be derated by 3.7 mW for each °C above 50°C ambient. Heat sinking enables the safe dissipation of more power. The LM3480 actively limits its junction temperature to about 150°C.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Maximum input voltage (IN to GND) 0 30 V
Junction temperature (TJ) –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) LM3480 UNIT
SOT-23 (DBZ)
3 PINS
RθJA Junction-to-ambient thermal resistance 269.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 141.1
RθJB Junction-to-board thermal resistance 63.1
ψJT Junction-to-top characterization parameter 24.2
ψJB Junction-to-board characterization parameter 62.1
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: LM3480-3.3, LM3480-5

Typical and other limits apply for TA = TJ = 25°C, unless otherwise specified. Nominal output voltage (VNOM) = 3.3 V or 5 V.(1)(2)(3)
PARAMETER TEST CONDITIONS VNOM = 3.3 V VNOM = 5 V UNIT
MIN TYP MAX MIN TYP MAX
VOUT Output voltage VIN = VNOM + 1.5 V
1 mA ≤ IOUT ≤ 100 mA
3.17 3.3 3.43 4.8 5 5.2 V
VIN = VNOM + 1.5 V
1 mA ≤ IOUT ≤ 100 mA
−40°C ≤ TJ ≤ 125°C
3.14 3.46 4.75 5.25
ΔVOUT Line regulation VNOM + 1.5 V ≤ VIN ≤ 30 V
IOUT = 1 mA
10 12 mV
VNOM + 1.5 V ≤ VIN ≤ 30 V
IOUT = 1 mA
−40°C ≤ TJ ≤ 125°C
25 25
ΔVOUT Load regulation VIN = VNOM + 1.5 V
10 mA ≤ IOUT ≤ 100 mA
20 20 mV
VIN = VNOM + 1.5 V
10 mA ≤ IOUT ≤ 100 m
−40°C ≤ TJ ≤ 125°C
40 40
IGND Ground pin current VNOM + 1.5 V ≤ VIN ≤ 30 V
No Load
2 2 mA
VNOM + 1.5 V ≤ VIN ≤ 30 V
No Load,
−40°C ≤ TJ ≤ 125°C
4 4
VIN -
VOUT
Dropoutvoltage IOUT = 10 mA 0.7 0.9 0.7 0.9 V
IOUT = 10 mA
−40°C ≤ TJ ≤ 125°C
1 1
IOUT = 100 mA 0.9 1.1 0.9 1.1 V
IOUT = 100 mA
−40°C ≤ TJ ≤ 125°C
1.2 1.2
en Output noise voltage VIN = 10 V
Bandwidth: 10 Hz to 100 kHz
100 150 µVrms
(1) A typical is the center of characterization data taken with TA = TJ = 25°C. Typicals are not ensured.
(2) All limits are ensured. All electrical characteristics having room-temperature limits are tested during production with TA = TJ = 25°C. All hot and cold limits are ensured by correlating the electrical characteristics to process and temperature variations and applying statistical process control.
(3) All voltages except dropout are with respect to the voltage at the GND pin.

6.6 Electrical Characteristics: LM3480-12, LM3480-15

Typical and other limits apply for TA = TJ = 25°C, unless otherwise specified. Nominal output voltage (VNOM) = 12 V or 15 V.(1)(2)(3)
PARAMETER TEST CONDITIONS VNOM = 12 V VNOM = 15 V UNIT
MIN TYP MAX MIN TYP MAX
VOUT Output voltage VIN = VNOM + 1.5 V
1 mA ≤ IOUT ≤ 100 mA
11.52 12 12.48 14.4 15 15.6 V
VIN = VNOM + 1.5 V
1 mA ≤ IOUT ≤ 100 mA
−40°C ≤ TJ ≤ 125°C
11.4 12.6 14.25 15.75
ΔVOUT Line regulation VNOM + 1.5 V ≤ VIN ≤ 30 V
IOUT = 1 mA
14 16 mV
VNOM + 1.5 V ≤ VIN ≤ 30 V
IOUT = 1 mA
−40°C ≤ TJ ≤ 125°C
40 40
ΔVOUT Load regulation VIN = VNOM + 1.5 V
10 mA ≤ IOUT ≤ 100 mA
36 45 mV
VIN = VNOM + 1.5 V
10 mA ≤ IOUT ≤ 100 mA
−40°C ≤ TJ ≤ 125°C
60 75
IGND Ground pin current VNOM + 1.5 V ≤ VIN ≤ 30 V
No Load
2 2 mA
VNOM + 1.5 V ≤ VIN ≤ 30 V
No Load, −40°C ≤ TJ ≤ 125°C
4 4
VIN -
VOUT
Dropout voltage IOUT = 10 mA 0.7 0.9 0.7 0.9 V
IOUT = 10 mA,
−40°C ≤ TJ ≤ 125°C
1 1
IOUT = 100 mA 0.9 1.1 0.9 1.1 V
IOUT = 100 mA ,
−40°C ≤ TJ ≤ 125°C
1.2 1.2
en Output noise voltage VIN = 10 V
Bandwidth: 10 Hz to 100 kHz
360 450 µVrms
(1) A typical is the center of characterization data taken with TA = TJ = 25°C. Typicals are not ensured.
(2) All limits are ensured. All electrical characteristics having room-temperature limits are tested during production with TA = TJ = 25°C. All hot and cold limits are ensured by correlating the electrical characteristics to process and temperature variations and applying statistical process control.
(3) All voltages except dropout are with respect to the voltage at the GND pin.

6.7 Typical Characteristics

Unless indicated otherwise, VIN = VNOM + 1.5 V, CIN = 0.1 µF, COUT = 0.1 µF, and TA .= 25°C.
LM3480 10007019.png Figure 1. Dropout Voltage vs Load Current
LM3480 10007009.png Figure 3. Ground Pin Current vs Input Voltage
LM3480 10007021.png Figure 5. Ground Pin Current vs Load Current
LM3480 10007011.png Figure 7. Input Current vs Input Voltage
LM3480 10007013.png Figure 9. Output Voltage vs Input Voltage
LM3480 10007015.png Figure 11. Output Voltage vs Input Voltage
LM3480 10007017.png Figure 13. Output Short-Circuit Current
LM3480 10007024.png Figure 15. Power Supply Rejection Ratio
LM3480 10007023.png Figure 17. DC Load Regulation
LM3480 10007020.png Figure 2. Dropout Voltage vs Junction Temperature
LM3480 10007010.png Figure 4. Ground Pin Current vs Input Voltage
LM3480 10007022.png Figure 6. Ground Pin Current vs Junction Temperature
LM3480 10007012.png Figure 8. Input Current vs Input Voltage
LM3480 10007014.png Figure 10. Output Voltage vs Input Voltage
LM3480 10007016.png Figure 12. Output Voltage vs Input Voltage
LM3480 10007018.png Figure 14. Output Short-Circuit Current
LM3480 10007025.png Figure 16. Power Supply Rejection Ratio