SNVSCV4 September   2024 LM3645

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Switching Characteristics
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Power Amplifier Synchronization (TORCH/TX)
      2. 6.3.2 Input Voltage Flash Monitor (IVFM)
      3. 6.3.3 Fault/Protections
        1. 6.3.3.1  Fault Operation
        2. 6.3.3.2  Flash Time-Out
        3. 6.3.3.3  Overvoltage Protection (OVP)
        4. 6.3.3.4  Current Limit
        5. 6.3.3.5  NTC Thermistor Input/Outputs (TEMP1, TEMP2)
        6. 6.3.3.6  Thermal Scale Back
        7. 6.3.3.7  Thermal Shutdown (TSD)
        8. 6.3.3.8  Undervoltage Lockout (UVLO)
        9. 6.3.3.9  LED and/or VOUT Short Fault
        10. 6.3.3.10 Fault Behavior Table
    4. 6.4 Device Functioning Modes
      1. 6.4.1 Flash Mode
      2. 6.4.2 Torch Mode
      3. 6.4.3 IR Mode
      4. 6.4.4 Voltage Mode
      5. 6.4.5 Mode Transitions
      6. 6.4.6 Boost Operation
        1. 6.4.6.1 Start-Up (Enabling The Device)
        2. 6.4.6.2 Pass Mode
        3. 6.4.6.3 Output Voltage Regulation
    5. 6.5 Programming and Control
      1. 6.5.1 Dx_EN Bits
      2. 6.5.2 STR1 and STR2 Usage
      3. 6.5.3 TOR/TX Usage
      4. 6.5.4 Control State Diagram
      5. 6.5.5 I2C-Compatible Interface
        1. 6.5.5.1 Data Validity
        2. 6.5.5.2 Start and Stop Conditions
        3. 6.5.5.3 Transferring Data
        4. 6.5.5.4 I2C-Compatible Chip Address
    6. 6.6 Register Descriptions
      1. 6.6.1 MainReg Registers
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Output Control Examples
        1. 7.2.2.1 Four Channel Flash with Strobe1 Trigger Starting in Standby
        2. 7.2.2.2 Four Channel Flash with Strobe1 Trigger Starting in I2C Torch
        3. 7.2.2.3 Mixed Mode Functionality
        4. 7.2.2.4 Voltage Mode Only
        5. 7.2.2.5 Voltage Mode With Advanced IR
      3. 7.2.3 Detailed Design Procedure
        1. 7.2.3.1 Snubber Requirement
        2. 7.2.3.2 Output Capacitor Selection
        3. 7.2.3.3 Input Capacitor Selection
        4. 7.2.3.4 Inductor Selection
      4. 7.2.4 Application Curves
  9. Power Supply Recommendations
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Third-Party Products Disclaimer
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Current Limit

The LM3645 features four selectable inductor current limits that are programmable through the I2C-compatible interface. When the inductor current limit is reached, the LM3645 terminates the charging phase of the switching cycle. Switching resumes at the start of the next switching period. If the overcurrent condition persists, the device operates continuously in current limit.

Since the current limit is sensed in the NMOS switch, there is no mechanism to limit the current when the device operates in Pass Mode (current does not flow through the NMOS in pass mode). In Boost mode or Pass mode if VOUT falls below 2.3 V, the device stops switching, and the P-channel MOSFET operates as a current source limiting the current to 200 mA. This prevents damage to the LM3645 and excessive current draw from the battery during output short-circuit conditions. The output enable bits are not cleared upon a Current Limit event, but a flag is set (bit [4] in reg 0x14).

The over current protection (OCP) circuit compares the inductor current to the input current limit (ICL) setting after a fixed blanking time of tDLY. The blanking time ensures that the OCP signal does not false fire as the low-side NMOS of the boost converter turns on. Use Equation 1 to estimate the maximum recommended total LED current to ensure proper current limit level operation accounting for the delay time.

Equation 1. LM3645

where

  • D is the duty cycle
  • η is the boost efficiency
  • ICL is the current limit setting
  • L is the inductance value
  • fSW is the boost switching frequency
LM3645 Current Limit TimingFigure 6-2 Current Limit Timing
Equation 2. LM3645