SNOS977F May   2001  – May 2016 LM397

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input Stage
      2. 7.3.2 Output Stage
    4. 7.4 Device Functional Modes
      1. 7.4.1 Hysteresis
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Input Voltage Range
        2. 8.2.2.2 Minimum Overdrive Voltage
        3. 8.2.2.3 Output and Drive Current
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Community Resources
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
VIN differential 30 30 V
Supply voltages ±15 30 V
Voltage at input pins −0.3 30 V
Junction temperature(3) 150 ºC
Soldering information    Infrared or Convection (20 sec.) 235 ºC
Wave Soldering (10 sec.) 260 ºC
Storage Temperature, Tstg −65 150 ºC
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.
(3) The maximum power dissipation is a function of TJ(MAX), RθJA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) – TA)/ RθJA . All numbers apply for packages soldered directly onto a PCB.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2)    ±2000 V
Machine Model(1)(2) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

6.3 Recommended Operating Conditions

MIN MAX UNIT
Supply voltage, VS 5 30 V
Temperature(1) −40 85 °C
(1) The maximum power dissipation is a function of TJ(MAX), RθJA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) – TA)/ RθJA . All numbers apply for packages soldered directly onto a PCB.

6.4 Thermal Information

THERMAL METRIC(1) LM397 UNIT
DBV (SOT-23)
5 PINS
RθJA Junction-to-ambient thermal resistance(2) 186 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 92.8 °C/W
RθJB Junction-to-board thermal resistance 38.9 °C/W
ψJT Junction-to-top characterization parameter 5.6 °C/W
ψJB Junction-to-board characterization parameter 38.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) The maximum power dissipation is a function of TJ(MAX), RθJA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) – TA)/ RθJA . All numbers apply for packages soldered directly onto a PCB.

6.5 Electrical Characteristics

Unless otherwise specified, all limits are ensured for TA = 25°C, VS = 5 V, V = 0 V, VCM = V+/2 = VO.
PARAMETER TEST CONDITIONS MIN(2) TYP(1) MAX(2) UNIT
VOS Input offset voltage VS = 5 V to 30 V,
VO = 1.4 V, VCM = 0 V
TA = 25ºC 2 7 mV
At the temperature extremes 10
IOS Input offset current VO = 1.4 V, VCM = 0 V TA = 25ºC 1.6 50 nA
At the temperature extremes 250
IB Input bias current VO = 1.4 V, VCM = 0 V TA = 25ºC 10 250 nA
At the temperature extremes 400
IS Supply current RL = open, VS = 5 V 0.25 0.7 mA
RL = open, VS = 30 V 0.3 2
IO Output sink current VIN+ = 1 V, VIN = 0 V, VO = 1.5 V 6 13 mA
ILEAKAGE Output leakage current VIN+ = 1 V, VIN = 0 V, VO = 5 V 0.1 nA
VIN+ = 1 V, VIN = 0 V, VO = 30 V 1 µA
VOL Output voltage low IO = −4 mA, VIN+ = 0 V,
VIN = 1 V
TA = 25ºC 180 400 mV
At the temperature extremes 700
VCM Common-mode input voltage range VS = 5 V to 30 V(3) TA = 25ºC 0 VS – 1.5 V
At the temperature extremes 0 VS – 2
AV Voltage gain VS = 15 V, VO = 1.4 V to 11.4 V,
RL > = 15 kΩ connected to VS
120 V/mV
tPHL Propagation delay
(high to low)
Input overdrive = 5 mV
RL = 5.1 kΩ connected to 5 V, CL = 15 pF
900 ns
Input overdrive = 50 mV
RL = 5.1 kΩ connected to 5 V, CL = 15 pF
250
tPLH Propagation delay
(low to high)
Input Overdrive = 5 mV
RL = 5.1 kΩ connected to 5 V, CL = 15 pF
940 µs
Input overdrive = 50 mV
RL = 5.1 kΩ connected to 5 V, CL = 15 pF
440 ns
(1) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.
(2) All limits are specified by testing or statistical analysis.
(3) The input common-mode voltage of either input should not be permitted to go below the negative rail by more than 0.3V. The upper end of the common-mode voltage range is VS – 1.5 V at 25°C.

6.6 Typical Characteristics

TA = 25°C. Unless otherwise specified.
LM397 20022103.gif Figure 1. Supply Current vs Supply Voltage
LM397 20022104.gif Figure 3. Output Saturation Voltage vs Output Sink Current
LM397 20022101.gif Figure 2. Input Bias Current vs Supply Current
LM397 20022102.gif Figure 4. Input Offset Voltage vs Supply Voltage