SNOS455G May   2000  – September 2015 LM4050-N , LM4050-N-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: 2-V Option
    6. 6.6  Electrical Characteristics: 2.5-V Option
    7. 6.7  Electrical Characteristics: 4.1-V Option
    8. 6.8  Electrical Characteristics: 5-V Option
    9. 6.9  Electrical Characteristics: 8.2-V Option
    10. 6.10 Electrical Characteristics: 10-V Option
    11. 6.11 Typical Characteristics
      1. 6.11.1 Start-Up Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Shunt Regulator
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Precision Reference for an Analog-to-Digital Converter
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
      3. 9.2.3 VOUT Bounded Amplifier
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
      4. 9.2.4 VIN Bounded Amplifier
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
      5. 9.2.5 ±4.096 Precision Reference
        1. 9.2.5.1 Design Requirements
        2. 9.2.5.2 Detailed Design Procedure
      6. 9.2.6 ±1-mA Precision Current Sources
        1. 9.2.6.1 Design Requirements
        2. 9.2.6.2 Detailed Design Procedure
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

See (1),(2)
MIN MAX UNIT
Reverse Current 20 mA
Forward Current 10 mA
Power Dissipation (TA = 25°C)(1) 280 mW
Maximum Junction Temperature (2) 150 °C
Storage Temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine model (MM) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted) (1)(1)
MIN MAX UNIT
Industrial Temperature Range Ambient Temperature Range –40 85 °C
Junction Temperature Range –40 85 °C
Extended Temperature Range Ambient Temperature Range –40 125 °C
Junction Temperature –40 125 °C
(1) Recommended Operating Conditions are conditions under the device is intended to be functional. For specifications and conditions, see Electrical Characteristics section.

6.4 Thermal Information

THERMAL METRIC(1) LM4050-N/-Q1 UNIT
DBZ (SOT-23)
3 PINS
RθJA Junction-to-ambient thermal resistance 287 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 106.6 °C/W
RθJB Junction-to-board thermal resistance 57.7 °C/W
ψJT Junction-to-top characterization parameter 5.5 °C/W
ψJB Junction-to-board characterization parameter 56.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: 2-V Option

All other limits TA = TJ = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of ±0.1%, ±0.2%, and 0.5% respectively.
PARAMETER TEST CONDITIONS MIN(4) TYP(3) MAX(4) UNIT
VR Reverse Breakdown Voltage IR = 100 μA 2.048 V
Reverse breakdown voltage tolerance(5) IR = 100 μA LM4050AIM3, LM4050AEM3 ±2.048 mV
LM4050BIM3, LM4050BEM3 ±4.096
LM4050CIM3, LM4050CEM3 ±1024
Industrial temperature range
TA = TJ = TMIN to TMAX
LM4050AIM3, LM4050AEM3 ±9.0112
LM4050BIM3, LM4050BEM3 ±11.4688
LM4050CIM3, LM4050CEM3 ±14.7456
Extended temperature range
TA = TJ = TMIN to TMAX
LM4050AIM3, LM4050AEM3 ±12.288
LM4050BIM3, LM4050BEM3 ±14.7456
LM4050CIM3, LM4050CEM3 ±17.2032
IRMIN Minimum operating current TA = TJ = 25°C 41 60 μA
TA = TJ = TMIN to TMAX 65
ΔVR/ΔT Average reverse breakdown voltage temperature coefficient(5) IR = 10 mA ±20 ppm/°C
IR = 1 mA ±15
IR = 100 μA, TA = TJ = 25°C ±15
IR = 100 μA,
TA = TJ = TMIN to TMAX
±50
ΔVR/ΔIR Reverse breakdown voltage change with operating current change(6) IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C 0.3 0.8 mV
IRMIN ≤ IR ≤ 1 mA,
TA = TJ = TMIN to TMAX
1.2
1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C 2.3 6
1 mA ≤ IR ≤ 15 mA,
TA = TJ = TMIN to TMAX
8
ZR Reverse dynamic impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR 0.3 Ω
eN Wideband noise IR = 100 μA, 10 Hz ≤ f ≤ 10 kHz 34 μVrms
ΔVR Reverse breakdown voltage long term stability t = 1000 hrs, T = 25°C ±0.1°C, IR = 100 μA 120 ppm
VHYST Thermal hysteresis (7) ΔT = −40°C to 125°C 0.7 mV

6.6 Electrical Characteristics: 2.5-V Option

All other limits TA = TJ = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of ±0.1%, ±0.2%, and 0.5% respectively.
PARAMETER TEST CONDITIONS MIN(4) TYP(3) MAX(4) UNIT
VR Reverse breakdown voltage IR = 100 μA 2.500 V
IR = 100 μA LM4050AIM3, LM4050AEM3 ±2.5 mV
LM4050BIM3, LM4050BEM3 ±5
LM4050CIM3, LM4050CEM3 ±13
Reverse breakdown voltage tolerance(5) Industrial temperature range,
TA = TJ = TMIN to TMAX
LM4050AIM3, LM4050AEM3 ±11 mV
LM4050BIM3, LM4050BEM3 ±24
LM4050CIM3, LM4050CEM3 ±21
Extended temperature range,
TA = TJ = TMIN to TMAX
LM4050AIM3, LM4050AEM3 ±15
LM4050BIM3, LM4050BEM3 ±18
LM4050CIM3, LM4050CEM3 ±25
IRMIN Minimum operating current TA = TJ = 25°C 41 60 μA
TA = TJ = TMIN to TMAX 65
ΔVR/ΔT Average reverse breakdown voltage temperature coefficient(5) IR = 10 mA ±20 ppm/°C
IR = 1 mA ±15
IR = 100 μA, TA = TJ = 25°C ±15
IR = 100 μA,
TA = TJ = TMIN to TMAX
±50
ΔVR/ΔIR Reverse breakdown voltage change with operating current change(6) IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C 0.3 0.8 mV
IRMIN ≤ IR ≤ 1 mA
TA = TJ = TMIN to TMAX
1.2
ΔVR/ΔIR Reverse breakdown voltage change with operating current change(6) 1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C 2.3 6 mV
1 mA ≤ IR ≤ 15 mA,
TA = TJ = TMIN to TMAX
8
ZR Reverse dynamic impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR 0.3 Ω
eN Wideband noise IR = 100 μA, 10 Hz ≤ f ≤ 10 kHz 41 μVrms
ΔVR Reverse breakdown voltage long term stability t = 1000 hrs, T = 25°C ±0.1°C, IR = 100 μA 120 ppm
VHYST Thermal hysteresis (7) ΔT = −40°C to 125°C 07 mV

6.7 Electrical Characteristics: 4.1-V Option

All other limits TA = TJ = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of ±0.1%, ±0.2%, and 0.5% respectively.
PARAMETER TEST CONDITIONS MIN TYP(3) MAX UNIT
VR Reverse Breakdown Voltage IR = 100 μA 4.096 V
Reverse Breakdown Voltage Tolerance(5) IR = 100 μA LM4050AIM3, LM4050AEM3 ±4.1 mV
LM4050BIM3,LM4050BEM3 ±8.2
LM4050CIM3, LM4050CEM3 ±21
Industrial temperature range,
TA = TJ = TMIN to TMAX
LM4050AIM3, LM4050AEM3 ±18
LM4050BIM3,LM4050BEM3 ±22
LM4050CIM3, LM4050CEM3 ±34
Extended temperature range,
TA = TJ = TMIN to TMAX
LM4050AIM3, LM4050AEM3 ±25
LM4050BIM3,LM4050BEM3 ±29
LM4050CIM3, LM4050CEM3 ±41
IRMIN Minimum Operating Current TA = TJ = 25°C 52 68 μA
Industrial temperature range,
TA = TJ = TMIN to TMAX
73
Extended temperature range,
TA = TJ = TMIN to TMAX
78
ΔVR/ΔT Average reverse breakdown voltage temperature coefficient(5) IR = 10 mA ±30 ppm/°C
IR = 1 mA ±20
IR = 100 μA, TA = TJ = 25°C ±20
IR = 100 μA,
TA = TJ = TMIN to TMAX
±50
ΔVR/ΔIR Reverse breakdown voltage change with operating current change(6) IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C 0.2 0.9 mV
IRMIN ≤ IR ≤ 1 mA,
TA = TJ = TMIN to TMAX
1.2
1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C 2 7
1 mA ≤ IR ≤ 15 mA,
TA = TJ = TMIN to TMAX
10
ZR Reverse dynamic impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR 0.5 Ω
eN Wideband noise IR = 100 μA, 10 Hz ≤ f ≤ 10 kHz 93 μVrms
ΔVR Reverse breakdown voltage long term stability t = 1000 hrs, T = 25°C ±0.1°C, IR = 100 μA 120 ppm
VHYST Thermal hysteresis(7) ΔT = −40°C to 125°C 1.148 mV

6.8 Electrical Characteristics: 5-V Option

All other limits TA = TJ = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of ±0.1%, ±0.2% and 0.5% respectively.
PARAMETER TEST CONDITIONS MIN(4) TYP(3) MAX(4) UNIT
VR Reverse Breakdown Voltage IR = 100 μA 5 V
Reverse Breakdown Voltage Tolerance(5) IR = 100 μA LM4050AIM3, LM4050AEM3 ±5 mV
LM4050BIM3. LM4050BEM3 ±10
LM4050CIM3, LM4050CEM3 ±25
Industrial Temp. Range
TA = TJ = TMIN to TMAX
LM4050AIM3, LM4050AEM3 ±22
LM4050BIM3, LM4050BEM3 ±27
LM4050CIM3, LM4050CEM3 ±42
Extended Temp. Range
TA = TJ = TMIN to TMAX
LM4050AIM3, LM4050AEM3 ±30
LM4050BIM3, LM4050BEM3 ±35
LM4050CIM3, LM4050CEM3 ±50
IRMIN Minimum Operating Current TA = TJ = 25°C 56 74 μA
Industrial Temp. Range
TA = TJ = TMIN to TMAX
80
Extended Temp. Range
TA = TJ = TMIN to TMAX
90
ΔVR/ΔT Average Reverse Breakdown Voltage Temperature Coefficient(5) IR = 10 mA ±30 ppm/°C
IR = 1 mA ±20
IR = 100 μA, TA = TJ = 25°C ±20
IR = 100 μA
TA = TJ = TMIN to TMAX
±50
ΔVR/ΔIR Reverse Breakdown Voltage Change with Operating Current Change(6) IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C 0.2 1 mV
IRMIN ≤ IR ≤ 1 mA
TA = TJ = TMIN to TMAX
1.4
1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C 2 8
1 mA ≤ IR ≤ 15 mA
TA = TJ = TMIN to TMAX
12
ZR Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz 0.5 Ω
IAC = 0.1 IR
eN Wideband Noise IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
93 μVrms
ΔVR Reverse Breakdown Voltage Long Term Stability t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120 ppm
VHYST Thermal Hysteresis(7) ΔT = –40°C to 125°C 1.4 mV

6.9 Electrical Characteristics: 8.2-V Option

All other limits TA = TJ = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2% and 0.5% respectively.
PARAMETER TEST CONDITIONS MIN(4) TYP(3) MAX(4) UNIT
VR Reverse Breakdown Voltage IR = 150 μA 8.192 V
Reverse Breakdown Voltage Tolerance (5) IR = 150 μA LM4050AIM3, LM4050AEM3 ±8.2 mV
LM4050BIM3, LM4050BEM3 ±16
LM4050CIM3, LM4050CEM3 ±41
Industrial Temp. Range
TA = TJ = TMIN to TMAX
LM4050AIM3, LM4050AEM3 ±35
LM4050BIM3, LM4050BEM3 ±43
LM4050CIM3, LM4050CEM3 ±68
Extended Temp. Range
TA = TJ = TMIN to TMAX
LM4050AIM3, LM4050AEM3 ±49
LM4050BIM3, LM4050BEM3 ±57
LM4050CIM3, LM4050CEM3 ±82
IRMIN Minimum Operating Current TA = TJ = 25°C 74 91 μA
Industrial Temp. Range
TA = TJ = TMIN to TMAX
95
Extended Temp. Range
TA = TJ = TMIN to TMAX
100
ΔVR/ΔT Average Reverse Breakdown Voltage Temperature Coefficient (5) IR = 10 mA ±40 ppm/°C
IR = 1 mA ±20
IR = 150 μA, TA = TJ = 25°C ±20
IR = 150 μA
TA = TJ = TMIN to TMAX
±50
ΔVR/ΔIR Reverse Breakdown Voltage Change with Operating Current Change (6) IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C 0.6 1.3 mV
IRMIN ≤ IR ≤ 1 mA
TA = TJ = TMIN to TMAX
2.5
1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C 7 10
1 mA ≤ IR ≤ 15 mA
TA = TJ = TMIN to TMAX
18
ZR Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
0.6 Ω
eN Wideband Noise IR = 150 μA
10 Hz ≤ f ≤ 10 kHz
150 μVrms
ΔVR Reverse Breakdown Voltage Long Term Stability t = 1000 hrs
T = 25°C ±0.1°C
IR = 150 μA
120 ppm
VHYST Thermal Hysteresis
(7)
ΔT = −40°C to 125°C 2.3 mV

6.10 Electrical Characteristics: 10-V Option

All other limits TA = TJ = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2% and 0.5% respectively.
PARAMETER TEST CONDITIONS MIN(4) TYP(3) MAX(4) UNIT
VR Reverse Breakdown Voltage IR = 150 μA 10 V
Reverse Breakdown Voltage Tolerance (5) IR = 150 μA LM4050AIM3, LM4050AEM3 ±10 mV (max)
LM4050BIM3, LM4050BEM3 ±20
LM4050CIM3, LM4050CEM3 ±50
Industrial Temp. Range
TA = TJ = TMIN to TMAX
LM4050AIM3, LM4050AEM3 ±43
LM4050BIM3, LM4050BEM3 ±53
LM4050CIM3, LM4050CEM3 ±83
Extended Temp. Range
TA = TJ = TMIN to TMAX
LM4050AIM3, LM4050AEM3 ±60
LM4050BIM3, LM4050BEM3 ±70
LM4050CIM3, LM4050CEM3 ±100
IRMIN Minimum Operating Current TA = TJ = 25°C 80 100 μA
Industrial Temp. Range
TA = TJ = TMIN to TMAX
103
Extended Temp. Range
TA = TJ = TMIN to TMAX
110
ΔVR/ΔT Average Reverse Breakdown Voltage Temperature Coefficient (5) IR = 10 mA ±40 ppm/°C
IR = 1 mA ±20
IR = 150 μA, TA = TJ = 25°C ±20
IR = 150 μA
TA = TJ = TMIN to TMAX
±50
ΔVR/ΔIR Reverse Breakdown Voltage Change with Operating Current Change (6) IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C 0.8 1.5 mV
IRMIN ≤ IR ≤ 1 mA
TA = TJ = TMIN to TMAX
3.5
1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C 8 12
1 mA ≤ IR ≤ 15 mA
TA = TJ = TMIN to TMAX
23
ZR Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
0.7 Ω
eN Wideband Noise IR = 150 μA
10 Hz ≤ f ≤ 10 kHz
150 μVrms
ΔVR Reverse Breakdown Voltage Long Term Stability t = 1000 hrs
T = 25°C ±0.1°C
IR = 150 μA
120 ppm
VHYST Thermal Hysteresis(7) ΔT = −40°C to 125°C 2.8 mV
(1) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature), RθJA (junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is PDmax = (TJmax − TA)/RθJA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4050-N, TJmax = 150°C, and the typical thermal resistance (RθJA), when board mounted, is 326°C/W for the SOT-23 package.
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.
(3) Typicals are at TJ = 25°C and represent most likely parametric norm.
(4) Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL.
(5) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV R/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:  A-grade: ±0.425% = ±0.1% ±50 ppm/°C × 65°C  B-grade: ±0.525% = ±0.2% ±50 ppm/°C × 65°C  C-grade: ±0.825% = ±0.5% ±50 ppm/°C × 65°C. Therefore, as an example, the A-grade LM4050-N-2.5 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.425% = ±11 mV.
(6) Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.
(7) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.

6.11 Typical Characteristics

LM4050-N LM4050-N-Q1 10104510.png
Figure 1. Output Impedance vs Frequency
LM4050-N LM4050-N-Q1 10104512.png
Figure 3. Reverse Characteristics and Minimum Operating Current
LM4050-N LM4050-N-Q1 10104529.png
Figure 5. Thermal Hysteresis
LM4050-N LM4050-N-Q1 10104511.png
Figure 2. Output Impedance vs Frequency
LM4050-N LM4050-N-Q1 10104513.png
Figure 4. Noise Voltage vs Frequency

6.11.1 Start-Up Characteristics

LM4050-N LM4050-N-Q1 10104507.png
Figure 6. Input Voltage Step Response LM4050-N-2.5
LM4050-N LM4050-N-Q1 10104509.png
Figure 8. Input Voltage Step Response LM4050-N-10
LM4050-N LM4050-N-Q1 10104508.png
Figure 7. Input Voltage Step Response LM4050-N-5