SNVS372G August   2005  – October 2016 LM4132 , LM4132-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics LM4132-1.8 (VOUT = 1.8 V)
    6. 6.6  Electrical Characteristics LM4132-2 (VOUT = 2.048 V)
    7. 6.7  Electrical Characteristics LM4132-2.5 (VOUT = 2.5 V)
    8. 6.8  Electrical Characteristics LM4132-3 (VOUT = 3 V)
    9. 6.9  Electrical Characteristics LM4132-3.3 (VOUT = 3.3 V)
    10. 6.10 Electrical Characteristics LM4132-3.3-Q1(VOUT = 3.3 V)
    11. 6.11 Electrical Characteristics LM4132-4.1 (VOUT = 4.096 V)
    12. 6.12 Typical Characteristics
      1. 6.12.1 Typical Characteristics for 1.8 V
      2. 6.12.2 Typical Characteristics for 2.048 V
      3. 6.12.3 Typical Characteristics for 2.5 V
      4. 6.12.4 Typical Characteristics for 3 V
      5. 6.12.5 Typical Characteristics for 3.3 V
      6. 6.12.6 Typical Characteristics for 4.096 V
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Short Circuited Output
      2. 7.3.2 Turnon Time
      3. 7.3.3 Thermal Hysteresis
    4. 7.4 Device Functional Modes
  8. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 LM4132 Typical Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Supply and Enable Voltages
          2. 8.2.1.2.2 Component Selection
          3. 8.2.1.2.3 Temperature Coefficient
          4. 8.2.1.2.4 Long-Term Stability
          5. 8.2.1.2.5 Expression of Electrical Characteristics
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Other Application Circuits
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Related Links
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Voltage Maximum voltage on any input –0.3 6 V
Output short-circuit duration Indefinite
Power dissipation (TA = 25°C)(3) 350 mW
Lead temperature (soldering, 10 sec) 260 °C
Vapor phase (60 sec) 215 °C
Infrared (15 sec) 220 °C
Storage temperature, Tstg −65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/Distributors for availability and specifications.
(3) Without PCB copper enhancements. The maximum power dissipation must be de-rated at elevated temperatures and is limited by TJMAX (maximum junction temperature), RθJA (junction to ambient thermal resistance) and TA (ambient temperature). The maximum power dissipation at any temperature is: PDissMAX = (TJMAX – TA) / RθJA up to the value listed in theAbsolute Maximum Ratings. RθJA for SOT-23 is 164.1°C/W, TJMAX = 125°C.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge(1) Human-body model (HBM), per AEC Q100-002(2) ±2000 V
(1) The Human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin.
(2) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
Maximum input supply voltage 5.5 V
Maximum enable input voltage VIN V
Maximum load current LM4132 20 mA
LM4132-3.3-Q1 25 mA
Junction temperature, TJ –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) LM4132, LM4132-Q1 UNIT
DBV (SOT-23)
5 PINS
RθJA Junction-to-ambient thermal resistance 164.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 115.3 °C/W
RθJB Junction-to-board thermal resistance 27.1 °C/W
ψJT Junction-to-top characterization parameter 12.8 °C/W
ψJB Junction-to-board characterization parameter 26.6 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics LM4132-1.8 (VOUT = 1.8 V)

Unless otherwise specified, limits are TJ = 25°C, VIN = 5 V, and ILOAD = 0 mA.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VREF Output voltage initial accuracy LM4132A-1.8 (A Grade - 0.05%) –0.05% 0.05%
LM4132B-1.8 (B Grade - 0.1%) –0.1% 0.1%
LM4132C-1.8 (C Grade - 0.2%) –0.2% 0.2%
LM4132D-1.8 (D Grade - 0.4%) –0.4% 0.4%
LM4132E-1.8 (E Grade - 0.5%) –0.5% 0.5%
TCVREF/°C Temperature coefficient LM4132A-1.8 0°C ≤ TJ ≤ 85°C 10 ppm/°C
–40°C ≤ TJ ≤ 125°C 20
LM4132B-1.8 –40°C ≤ TJ ≤ 125°C 20
LM4132C-1.8 20
LM4132D-1.8 20
LM4132E-1.8 30
IQ Supply current 60 µA
–40°C ≤ TJ ≤ 125°C 100
IQ_SD Supply current in shutdown EN = 0 V 3 µA
–40°C ≤ TJ ≤ 125°C 7
ΔVREF/ΔVIN Line regulation VREF + 400 mV ≤ VIN ≤ 5.5 V 30 ppm/V
ΔVREF/ΔILOAD Load regulation 0 mA ≤ ILOAD ≤ 20 mA 25 ppm/mA
–40°C ≤ TJ ≤ 125°C 120
ΔVREF Long-term stability(3) 1000 Hrs 50 ppm
Thermal hysteresis(4) –40°C ≤ TJ ≤ 125°C 75
VIN – VREF Dropout voltage(5) ILOAD = 10 mA 230 mV
–40°C ≤ TJ ≤ 125°C 400
VN Output noise voltage 0.1 Hz to 10 Hz 170 µVPP
ISC Short-circuit current –40°C ≤ TJ ≤ 125°C 75 mA
VIL Enable pin maximum low input level –40°C ≤ TJ ≤ 125°C 35% (VIN) V
VIH Enable pin minimum high input level –40°C ≤ TJ ≤ 125°C 65% (VIN) V
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using Statistical Quality Control.
(2) Typical numbers are at 25°C and represent the most likely parametric norm.
(3) Long-term stability is VREF at 25°C measured during 1000 hrs.
(4) Thermal hysteresis is defined as the change in 25°C output voltage before and after cycling the device from (–40°C to 125°C).
(5) Dropout voltage is defined as the minimum input to output differential at which the output voltage drops by 0.5% below the value measured with a 5-V input.

6.6 Electrical Characteristics LM4132-2 (VOUT = 2.048 V)

Unless otherwise specified, limits are TJ = 25°C, VIN = 5 V, and ILOAD = 0 mA.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VREF Output voltage initial accuracy LM4132A-2.0 (A Grade - 0.05%) –0.05% 0.05%
LM4132B-2.0 (B Grade - 0.1%) –0.1% 0.1%
LM4132C-2.0 (C Grade - 0.2%) –0.2% 0.2%
LM4132D-2.0 (D Grade - 0.4%) –0.4% 0.4%
LM4132E-2.0 (E Grade - 0.5%) –0.5% 0.5%
TCVREF/°C Temperature coefficient LM4132A-2.0 0°C ≤ TJ ≤ 85°C 10 ppm/°C
–40°C ≤ TJ ≤ 125°C 20
LM4132B-2.0 –40°C ≤ TJ ≤ 125°C 20
LM4132C-2.0 20
LM4132D-2.0 20
LM4132E-2.0 30
IQ Supply current 60 µA
–40°C ≤ TJ ≤ 125°C 100
IQ_SD Supply current in shutdown EN = 0 V 3 µA
–40°C ≤ TJ ≤ 125°C 7
ΔVREF/ΔVIN Line regulation VREF + 400 mV ≤ VIN ≤ 5.5 V 30 ppm/V
ΔVREF/ΔILOAD Load regulation 0 mA ≤ ILOAD ≤ 20 mA 25 ppm/mA
–40°C ≤ TJ ≤ 125°C 120
ΔVREF Long-term stability(3) 1000 Hrs 50 ppm
Thermal hysteresis(4) –40°C ≤ TJ ≤ 125°C 75
VIN – VREF Dropout voltage(5) ILOAD = 10 mA 175 mV
–40°C ≤ TJ ≤ 125°C 400
VN Output noise voltage 0.1 Hz to 10 Hz 190 µVPP
ISC Short-circuit current –40°C ≤ TJ ≤ 125°C 75 mA
VIL Enable pin maximum low input level –40°C ≤ TJ ≤ 125°C 35% (VIN) V
VIH Enable pin minimum high input level –40°C ≤ TJ ≤ 125°C 65% (VIN) V
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using Statistical Quality Control.
(2) Typical numbers are at 25°C and represent the most likely parametric norm.
(3) Long-term stability is VREF at 25°C measured during 1000 hrs.
(4) Thermal hysteresis is defined as the change in 25°C output voltage before and after cycling the device from (–40°C to 125°C).
(5) Dropout voltage is defined as the minimum input to output differential at which the output voltage drops by 0.5% below the value measured with a 5-V input.

6.7 Electrical Characteristics LM4132-2.5 (VOUT = 2.5 V)

Unless otherwise specified, limits are TJ = 25°C, VIN = 5 V, and ILOAD = 0 mA.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VREF Output voltage initial accuracy LM4132A-2.5 (A Grade - 0.05%) –0.05% 0.05%
LM4132B-2.5 (B Grade - 0.1%) –0.1% 0.1%
LM4132C-2.5 (C Grade - 0.2%) –0.2% 0.2%
LM4132D-2.5 (D Grade - 0.4%) –0.4% 0.4%
LM4132E-2.5 (E Grade - 0.5%) –0.5% 0.5%
TCVREF/°C Temperature coefficient LM4132A-2.5 0°C ≤ TJ ≤ 85°C 10 ppm/°C
–40°C ≤ TJ ≤ 125°C 20
LM4132B-2.5 –40°C ≤ TJ ≤ 125°C 20
LM4132C-2.5 20
LM4132D-2.5 20
LM4132E-2.5 30
IQ Supply current 60 µA
–40°C ≤ TJ ≤ 125°C 100
IQ_SD Supply current in shutdown EN = 0 V 3 µA
–40°C ≤ TJ ≤ 125°C 7
ΔVREF/ΔVIN Line regulation VREF + 400 mV ≤ VIN ≤ 5.5 V 50 ppm/V
ΔVREF/ΔILOAD Load regulation 0 mA ≤ ILOAD ≤ 20 mA 25 ppm/mA
–40°C ≤ TJ ≤ 125°C 120
ΔVREF Long-term stability(3) 1000 Hrs 50 ppm
Thermal hysteresis(4) –40°C ≤ TJ ≤ 125°C 75
VIN – VREF Dropout voltage(5) ILOAD = 10 mA 175 mV
–40°C ≤ TJ ≤ 125°C 400
VN Output noise voltage 0.1 Hz to 10 Hz 240 µVPP
ISC Short-circuit current –40°C ≤ TJ ≤ 125°C 75 mA
VIL Enable pin maximum low input level –40°C ≤ TJ ≤ 125°C 35% (VIN) V
VIH Enable pin minimum high input level –40°C ≤ TJ ≤ 125°C 65% (VIN) V
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using Statistical Quality Control.
(2) Typical numbers are at 25°C and represent the most likely parametric norm.
(3) Long-term stability is VREF at 25°C measured during 1000 hrs.
(4) Thermal hysteresis is defined as the change in 25°C output voltage before and after cycling the device from (–40°C to 125°C).
(5) Dropout voltage is defined as the minimum input to output differential at which the output voltage drops by 0.5% below the value measured with a 5-V input.

6.8 Electrical Characteristics LM4132-3 (VOUT = 3 V)

Unless otherwise specified, limits are TJ = 25°C, VIN = 5 V, and ILOAD = 0 mA.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VREF Output voltage initial accuracy LM4132A-3.0 (A Grade - 0.05%) –0.05% 0.05%
LM4132B-3.0 (B Grade - 0.1%) –0.1% 0.1%
LM4132C-3.0 (C Grade - 0.2%) –0.2% 0.2%
LM4132D-3.0 (D Grade - 0.4%) –0.4% 0.4%
LM4132E-3.0 (E Grade - 0.5%) –0.5% 0.5%
TCVREF/°C Temperature coefficient LM4132A-3.0 0°C ≤ TJ ≤ 85°C 10 ppm/°C
–40°C ≤ TJ ≤ 125°C 20
LM4132B-3.0 –40°C ≤ TJ ≤ 125°C 20
LM4132C-3.0 20
LM4132D-3.0 20
LM4132E-3.0 30
IQ Supply current 60 µA
–40°C ≤ TJ ≤ 125°C 100
IQ_SD Supply current in shutdown EN = 0 V 3 µA
–40°C ≤ TJ ≤ 125°C 7
ΔVREF/ΔVIN Line regulation VREF + 400 mV ≤ VIN ≤ 5.5 V 70 ppm/V
ΔVREF/ΔILOAD Load regulation 0 mA ≤ ILOAD ≤ 20 mA 25 ppm/mA
–40°C ≤ TJ ≤ 125°C 120
ΔVREF Long-term stability(3) 1000 Hrs 50 ppm
Thermal hysteresis(4) –40°C ≤ TJ ≤ 125°C 75
VIN – VREF Dropout voltage(5) ILOAD = 10 mA 175 mV
–40°C ≤ TJ ≤ 125°C 400
VN Output noise voltage 0.1 Hz to 10 Hz 285 µVPP
ISC Short-circuit current –40°C ≤ TJ ≤ 125°C 75 mA
VIL Enable pin maximum low input level –40°C ≤ TJ ≤ 125°C 35% (VIN) V
VIH Enable pin minimum high input level –40°C ≤ TJ ≤ 125°C 65% (VIN) V
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using Statistical Quality Control.
(2) Typical numbers are at 25°C and represent the most likely parametric norm.
(3) Long-term stability is VREF at 25°C measured during 1000 hrs.
(4) Thermal hysteresis is defined as the change in 25°C output voltage before and after cycling the device from (–40°C to 125°C).
(5) Dropout voltage is defined as the minimum input to output differential at which the output voltage drops by 0.5% below the value measured with a 5-V input.

6.9 Electrical Characteristics LM4132-3.3 (VOUT = 3.3 V)

Unless otherwise specified, limits are TJ = 25°C, VIN = 5 V, and ILOAD = 0 mA.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VREF Output voltage initial accuracy LM4132A-3.3 (A Grade - 0.05%) –0.05% 0.05%
LM4132B-3.3 (B Grade - 0.1%) –0.1% 0.1%
LM4132C-3.3 (C Grade - 0.2%) –0.2% 0.2%
LM4132D-3.3 (D Grade - 0.4%) –0.4% 0.4%
LM4132E-3.3 (E Grade - 0.5%) –0.5% 0.5%
TCVREF/°C Temperature coefficient LM4132A-3.3 0°C ≤ TJ ≤ 85°C 10 ppm/°C
–40°C ≤ TJ ≤ 125°C 20
LM4132B-3.3 –40°C ≤ TJ ≤ 125°C 20
LM4132C-3.3 20
LM4132D-3.3 20
LM4132E-3.3 30
IQ Supply current 60 µA
–40°C ≤ TJ ≤ 125°C 100
IQ_SD Supply current in shutdown EN = 0 V 3 µA
–40°C ≤ TJ ≤ 125°C 7
ΔVREF/ΔVIN Line regulation VREF + 400 mV ≤ VIN ≤ 5.5 V 85 ppm/V
ΔVREF/ΔILOAD Load Regulation 0 mA ≤ ILOAD ≤ 20 mA 25 ppm/mA
–40°C ≤ TJ ≤ 125°C 120
ΔVREF Long-term stability(3) 1000 Hrs 50 ppm
Thermal hysteresis(4) –40°C ≤ TJ ≤ 125°C 75
VIN – VREF Dropout voltage(5) ILOAD = 10 mA 175 mV
–40°C ≤ TJ ≤ 125°C 400
VN Output noise voltage 0.1 Hz to 10 Hz 310 µVPP
ISC Short-circuit current –40°C ≤ TJ ≤ 125°C 75 mA
VIL Enable pin maximum low input level –40°C ≤ TJ ≤ 125°C 35% (VIN) V
VIH Enable pin minimum high input level –40°C ≤ TJ ≤ 125°C 65% (VIN) V
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using Statistical Quality Control.
(2) Typical numbers are at 25°C and represent the most likely parametric norm.
(3) Long-term stability is VREF at 25°C measured during 1000 hrs.
(4) Thermal hysteresis is defined as the change in 25°C output voltage before and after cycling the device from (–40°C to 125°C).
(5) Dropout voltage is defined as the minimum input to output differential at which the output voltage drops by 0.5% below the value measured with a 5-V input.

6.10 Electrical Characteristics LM4132-3.3-Q1(VOUT = 3.3 V)

Unless otherwise specified, limits are TJ = 25°C, VIN = 5 V, and ILOAD = 0 mA.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VREF Output voltage initial accuracy LM4132C-3.3-Q1 (C Grade - 0.2%) –0.2% 0.2%
LM4132D-3.3-Q1 (D Grade - 0.4%) –0.4% 0.4%
TCVREF/°C Temperature coefficient LM4132C-3.3-Q1 –40°C ≤ TJ ≤ 125°C 20 ppm/°C
LM4132D-3.3-Q1 20
IQ Supply current 60 µA
–40°C ≤ TJ ≤ 125°C 100
IQ_SD Supply current in shutdown EN = 0 V 3 µA
–40°C ≤ TJ ≤ 125°C 7
ΔVREF/ΔVIN Line regulation VREF + 400 mV ≤ VIN ≤ 5.5 V 85 ppm/V
ΔVREF/ΔILOAD Load Regulation 0 mA ≤ ILOAD ≤ 25 mA 25 ppm/mA
–40°C ≤ TJ ≤ 125°C 120
ΔVREF Long-term stability(3) 1000 Hrs 50 ppm
Thermal hysteresis(4) –40°C ≤ TJ ≤ 125°C 75
VIN – VREF Dropout voltage(5) ILOAD = 10 mA 175 mV
–40°C ≤ TJ ≤ 125°C 400
VN Output noise voltage 0.1 Hz to 10 Hz 310 µVPP
ISC Short-circuit current –40°C ≤ TJ ≤ 125°C 75 mA
VIL Enable pin maximum low input level –40°C ≤ TJ ≤ 125°C 35% (VIN) V
VIH Enable pin minimum high input level –40°C ≤ TJ ≤ 125°C 65% (VIN) V
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using Statistical Quality Control.
(2) Typical numbers are at 25°C and represent the most likely parametric norm.
(3) Long-term stability is VREF at 25°C measured during 1000 hrs.
(4) Thermal hysteresis is defined as the change in 25°C output voltage before and after cycling the device from (–40°C to 125°C).
(5) Dropout voltage is defined as the minimum input to output differential at which the output voltage drops by 0.5% below the value measured with a 5-V input.

6.11 Electrical Characteristics LM4132-4.1 (VOUT = 4.096 V)

Unless otherwise specified, limits are TJ = 25°C, VIN = 5 V, and ILOAD = 0 mA.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VREF Output voltage initial accuracy LM4132A-4.1 (A Grade - 0.05%) –0.05% 0.05%
LM4132B-4.1 (B Grade - 0.1%) –0.1% 0.1%
LM4132C-4.1 (C Grade - 0.2%) –0.2% 0.2%
LM4132D-4.1 (D Grade - 0.4%) –0.4% 0.4%
LM4132E-4.1 (E Grade - 0.5%) –0.5% 0.5%
TCVREF/°C Temperature coefficient LM4132A-4.1 0°C ≤ TJ ≤ 85°C 10 ppm/°C
–40°C ≤ TJ ≤ 125°C 20
LM4132B-4.1 –40°C ≤ TJ ≤ 125°C 20
LM4132C-4.1 20
LM4132D-4.1 20
LM4132E-4.1 30
IQ Supply current 60 µA
–40°C ≤ TJ ≤ 125°C 100
IQ_SD Supply current in shutdown EN = 0 V 3 µA
–40°C ≤ TJ ≤ 125°C 7
ΔVREF/ΔVIN Line regulation VREF + 400 mV ≤ VIN ≤ 5.5 V 100 ppm/V
ΔVREF/ΔILOAD Load regulation 0 mA ≤ ILOAD ≤ 20 mA 25 ppm/mA
–40°C ≤ TJ ≤ 125°C 120
ΔVREF Long-term stability(3) 1000 Hrs 50 ppm
Thermal hysteresis(4) –40°C ≤ TJ ≤ 125°C 75
VIN – VREF Dropout voltage(5) ILOAD = 10 mA 175 mV
–40°C ≤ TJ ≤ 125°C 400
VN Output noise voltage 0.1 Hz to 10 Hz 350 µVPP
ISC Short-circuit current –40°C ≤ TJ ≤ 125°C 75 mA
VIL Enable pin maximum low input level –40°C ≤ TJ ≤ 125°C 35% (VIN) V
VIH Enable pin minimum high input level –40°C ≤ TJ ≤ 125°C 65% (VIN) V
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using Statistical Quality Control.
(2) Typical numbers are at 25°C and represent the most likely parametric norm.
(3) Long-term stability is VREF at 25°C measured during 1000 hrs.
(4) Thermal hysteresis is defined as the change in 25°C output voltage before and after cycling the device from (–40°C to 125°C).
(5) Dropout voltage is defined as the minimum input to output differential at which the output voltage drops by 0.5% below the value measured with a 5-V input.

6.12 Typical Characteristics

LM4132 LM4132-Q1 20151308.gif Figure 1. Dropout vs Load to 0.5% Accuracy
LM4132 LM4132-Q1 20151317.gif Figure 3. Enable Threshold Voltage and Hysteresis
LM4132 LM4132-Q1 20151330.gif Figure 5. Typical Long-Term Stability
LM4132 LM4132-Q1 20151331.gif Figure 7. Typical Thermal Hysteresis
LM4132 LM4132-Q1 20151350.png
ILOAD = 0 to 10 mA
Figure 9. Load Transient Response
LM4132 LM4132-Q1 20151353.gif Figure 2. Supply Current vs Input Voltage
LM4132 LM4132-Q1 20151310.gif Figure 4. Shutdown IQ vs Temperature
LM4132 LM4132-Q1 20151318.gif Figure 6. Ground Current vs Load Current
LM4132 LM4132-Q1 20151352.png Figure 8. Turnon Transient Response
LM4132 LM4132-Q1 20151351.png
VIN = 4 V to 5.5 V
Figure 10. Line Transient Response

6.12.1 Typical Characteristics for 1.8 V

LM4132 LM4132-Q1 20151364.gif Figure 11. Output Voltage vs Temperature
LM4132 LM4132-Q1 20151368.gif Figure 13. Line Regulation
LM4132 LM4132-Q1 20151373.gif Figure 15. Output Voltage Noise Spectrum
LM4132 LM4132-Q1 20151367.gif Figure 12. Load Regulation
LM4132 LM4132-Q1 20151379.png Figure 14. 0.1–10 Hz Noise
LM4132 LM4132-Q1 20151376.gif Figure 16. Power Supply Rejection vs Frequency

6.12.2 Typical Characteristics for 2.048 V

LM4132 LM4132-Q1 20151303.gif Figure 17. Output Voltage vs Temperature
LM4132 LM4132-Q1 20151309.gif Figure 19. Line Regulation
LM4132 LM4132-Q1 20151340.gif Figure 21. Output Voltage Noise Spectrum
LM4132 LM4132-Q1 20151304.gif Figure 18. Load Regulation
LM4132 LM4132-Q1 20151314.png Figure 20. 0.1–10 Hz Noise
LM4132 LM4132-Q1 20151315.gif Figure 22. Power Supply Rejection vs Frequency

6.12.3 Typical Characteristics for 2.5 V

LM4132 LM4132-Q1 20151354.gif Figure 23. Output Voltage vs Temperature
LM4132 LM4132-Q1 20151356.gif Figure 25. Line Regulation
LM4132 LM4132-Q1 20151357.gif Figure 27. Output Voltage Noise Spectrum
LM4132 LM4132-Q1 20151355.gif Figure 24. Load Regulation
LM4132 LM4132-Q1 20151321.png Figure 26. 0.1–10 Hz Noise
LM4132 LM4132-Q1 20151358.gif Figure 28. Power Supply Rejection vs Frequency

6.12.4 Typical Characteristics for 3 V

LM4132 LM4132-Q1 20151365.gif Figure 29. Output Voltage vs Temperature
LM4132 LM4132-Q1 20151370.gif Figure 31. Line Regulation
LM4132 LM4132-Q1 20151374.gif Figure 33. Output Voltage Noise Spectrum
LM4132 LM4132-Q1 20151369.gif Figure 30. Load Regulation
LM4132 LM4132-Q1 20151380.png Figure 32. 0.1–10 Hz Noise
LM4132 LM4132-Q1 20151377.gif Figure 34. Power Supply Rejection vs Frequency

6.12.5 Typical Characteristics for 3.3 V

LM4132 LM4132-Q1 20151366.gif Figure 35. Output Voltage vs Temperature
LM4132 LM4132-Q1 20151372.gif Figure 37. Line Regulation
LM4132 LM4132-Q1 20151375.gif Figure 39. Output Voltage Noise Spectrum
LM4132 LM4132-Q1 20151371.gif Figure 36. Load Regulation
LM4132 LM4132-Q1 20151381.png Figure 38. 0.1–10 Hz Noise
LM4132 LM4132-Q1 20151378.gif Figure 40. Power Supply Rejection vs Frequency

6.12.6 Typical Characteristics for 4.096 V

LM4132 LM4132-Q1 20151359.gif Figure 41. Output Voltage vs Temperature
LM4132 LM4132-Q1 20151361.gif Figure 43. Line Regulation
LM4132 LM4132-Q1 20151362.gif Figure 45. Output Voltage Noise Spectrum
LM4132 LM4132-Q1 20151360.gif Figure 42. Load Regulation
LM4132 LM4132-Q1 20151319.png Figure 44. 0.1–10 Hz Noise
LM4132 LM4132-Q1 20151363.gif Figure 46. Power Supply Rejection vs Frequency