SNVS020H May   2000  – January 2016 LM431

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Shunt Regulator
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Other Applications
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Community Resources
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Cathode voltage 37 V
Reference voltage –0.5 V
Continuous cathode current –10 150 mA
Reference input current 10 mA
Internal power dissipation(3)(4)       TO-92 package   0.78 W
SOIC package 0.81 W
SOT-23 package 0.28 W
Operating temperature Industrial (LM431xI) –40 85 °C
Commercial (LM431xC) 0 70 °C
Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.
(3) TJ Max = 150°C.
(4) Ratings apply to ambient temperature at 25°C. Above this temperature, derate the TO-92 at 6.2 mW/°C, the SOIC at 6.5 mW/°C, the SOT-23 at 2.2 mW/°C.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Cathode voltage VREF 37 V
Cathode current 1 100 mA

6.4 Thermal Information

THERMAL METRIC(1) LM431 UNIT
D (SOIC) DBZ (SOT-23) LP (TO-92)
8 PINS 3 PINS 3 PINS
RθJA Junction-to-ambient thermal resistance 126.9 267.7 162.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 72.2 138.3 85.8 °C/W
RθJB Junction-to-board thermal resistance 67.5 61 °C/W
ψJT Junction-to-top characterization parameter 21.1 21.5 29.4 °C/W
ψJB Junction-to-board characterization parameter 67 60.1 141.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

TA = 25°C unless otherwise specified
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VREF Reference voltage VZ = VREF, II = 10 mA
LM431A (Figure 6 )
2.44 2.495 2.55 V
VZ = VREF, II = 10 mA
LM431B (Figure 6 )
2.47 2.495 2.52
VZ = VREF, II = 10 mA
LM431C (Figure 6 )
2.485 2.5 2.51
VDEV Deviation of reference input voltage overtemperature(1) VZ = VREF, II = 10 mA,
TA = full range (Figure 6 )
8 17 mV
ΔVREF/ΔVZ Ratio of the change in reference voltage to the change in cathode voltage IZ = 10 mA (Figure 7 ) VZ from VREF to 10 V −1.4 −2.7 mV/V
VZ from 10 V to 36 V −1 −2
IREF Reference input current R1 = 10 kΩ, R2 = ∞, II = 10 mA (Figure 7 ) 2 4 μA
∝IREF Deviation of reference input current overtemperature R1 = 10 kΩ, R2 = ∞, II = 10 mA,
TA = full range (Figure 7 )
0.4 1.2 μA
IZ(MIN) Minimum cathode current for regulation VZ = VREF(Figure 6 ) 0.4 1 mA
IZ(OFF) OFF-state current VZ = 36 V, VREF = 0 V (Figure 8) 0.3 1 μA
rZ Dynamic output impedance(2) VZ = VREF, LM431A,
Frequency = 0 Hz (Figure 6 )
0.75 Ω
VZ = VREF, LM431B, LM431C
Frequency = 0 Hz (Figure 6 )
0.5
(1) Deviation of reference input voltage, VDEV, is defined as the maximum variation of the reference input voltage over the full temperature range.
LM431 1005507.png
The average temperature coefficient of the reference input voltage, ∝VREF, is defined as:
LM431 1005533.png
Where:
T2 – T1 = full temperature change (0–70°C).
VREF can be positive or negative depending on whether the slope is positive or negative.
Example: VDEV = 8 mV, VREF = 2495 mV, T2 – T1 = 70°C, slope is positive.
LM431 1005534.png
(2) The dynamic output impedance, rZ, is defined as:
LM431 1005535.png
When the device is programmed with two external resistors, R1 and R2, (see Figure 7), the dynamic output impedance of the overall circuit, rZ, is defined as:
LM431 1005536.png

6.6 Typical Characteristics

LM431 1005509.png
Figure 1. Dynamic Impedance vs Frequency
LM431 1005511.png
Note: The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial VZ and IZ conditions with CL = 0. V+ and CL were then adjusted to determine the ranges of stability.
Figure 2. Stability Boundary Conditions