ZHCSCD8C April   2014  – April 2019 LM46002

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      简化原理图
      2.      辐射发射图 VIN = 24V,VOUT = 3.3V,FS= 500kHz,IOUT = 2A
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Fixed-Frequency, Peak-Current-Mode-Controlled, Step-Down Regulator
      2. 7.3.2  Light Load Operation
      3. 7.3.3  Adjustable Output Voltage
      4. 7.3.4  Enable (ENABLE)
      5. 7.3.5  VCC, UVLO, and BIAS
      6. 7.3.6  Soft Start and Voltage Tracking (SS/TRK)
      7. 7.3.7  Switching Frequency (RT) and Synchronization (SYNC)
      8. 7.3.8  Minimum ON-Time, Minimum OFF-Time, and Frequency Foldback at Dropout Conditions
      9. 7.3.9  Internal Compensation and CFF
      10. 7.3.10 Bootstrap Voltage (BOOT)
      11. 7.3.11 Power Good (PGOOD)
      12. 7.3.12 Overcurrent and Short-Circuit Protection
      13. 7.3.13 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
      4. 7.4.4 CCM Mode
      5. 7.4.5 Light Load Operation
      6. 7.4.6 Self-Bias Mode
  8. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Custom Design With WEBENCH® Tools
        2. 8.2.2.2  Output Voltage Setpoint
        3. 8.2.2.3  Switching Frequency
        4. 8.2.2.4  Input Capacitors
        5. 8.2.2.5  Inductor Selection
        6. 8.2.2.6  Output Capacitor Selection
        7. 8.2.2.7  Feed-Forward Capacitor
        8. 8.2.2.8  Bootstrap Capacitors
        9. 8.2.2.9  VCC Capacitor
        10. 8.2.2.10 BIAS Capacitors
        11. 8.2.2.11 Soft-Start Capacitors
        12. 8.2.2.12 Undervoltage Lockout Setpoint
        13. 8.2.2.13 PGOOD
      3. 8.2.3 Application Performance Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Compact Layout for EMI Reduction
      2. 10.1.2 Ground Plane and Thermal Considerations
      3. 10.1.3 Feedback Resistors
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 开发支持
        1. 11.1.1.1 使用 WEBENCH® 工具创建定制设计
    2. 11.2 接收文档更新通知
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 术语表
  12. 12机械、封装和可订购信息

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • PWP|16
散热焊盘机械数据 (封装 | 引脚)
订购信息

Application Performance Curves

Please refer to Table 2 for bill of materials for each VOUT and FS combination. Unless otherwise stated, application performance curves were taken at TA = 25 °C.
LM46002 BOM-3p3V500k.gif
VOUT = 3.3 V FS = 500 kHz VIN = 24 V
Figure 47. BOM for VOUT = 3.3 V FS = 500 kHz
LM46002 C007_voutr_3p3V_500kHz_snvsa13.png
VOUT = 3.3 V FS = 500 kHz
Figure 49. Output Voltage Regulation
LM46002 tc06_loadtrans_3p3V_500k_snvsa13.gif
VOUT = 3.3 V FS = 500 kHz VIN = 24 V
Figure 51. Load Transient Between 0.1 A and 2 A
LM46002 BOM-5V500k.gif
VOUT = 5 V FS = 500 kHz VIN = 24 V
Figure 53. BOM for VOUT = 5 V FS = 500 kHz
LM46002 C009_voutr_5V_500kHz_snvsa13.png
VOUT = 5 V FS = 500 kHz
Figure 55. Output Voltage Regulation
LM46002 tc08_loadtrans_5V_500k_snvsa13.gif
VOUT = 5 V FS = 500 kHz VIN = 24 V
Figure 57. Load Transient Between 0.1 A and 2 A
LM46002 BOM-5V200k.gif
VOUT = 5 V FS = 200 kHz VIN = 24 V
Figure 59. BOM for VOUT = 5 V FS = 200 kHz
LM46002 C008_voutr_5V_200kHz_snvsa13.png
VOUT = 5 V FS = 200 kHz
Figure 61. Output Voltage Regulation
LM46002 tc07_loadtrans_5V_200k_snvsa13.gif
VOUT = 5 V FS = 200 kHz VIN = 24 V
Figure 63. Load Transient Between 0.1 A and 2 A
LM46002 BOM-5V1M.gif
VOUT = 5 V FS = 1 MHz VIN = 24 V
Figure 65. BOM for VOUT = 5 V FS = 1 MHz
LM46002 C010_voutr_5V_1MHz_snvsa13.png
VOUT = 5 V FS = 1 MHz
Figure 67. Output Voltage Regulation
LM46002 tc09_loadtrans_5V_1M_snvsa13.gif
VOUT = 5 V FS = 1 MHz VIN = 24 V
Figure 69. Load Transient Between 0.1 A and 2 A
LM46002 BOM-12V500k.gif
VOUT = 12 V FS = 500 kHz VIN = 24 V
Figure 71. BOM for VOUT = 12 V FS = 500 kHz
LM46002 C011_voutr_12V_500kHz_snvsa13.png
VOUT = 12 V FS = 500 kHz
Figure 73. Output Voltage Regulation
LM46002 tc10_loadtrans_12V_500k_snvsa13.gif
VOUT = 12 V FS = 500 kHz VIN = 24 V
Figure 75. Load Transient Between 0.1 A and 2 A
LM46002 BOM-24V500k.gif
VOUT = 24 V FS = 500 kHz VIN = 48 V
Figure 77. BOM for VOUT = 24 V FS = 500 kHz
LM46002 C012_voutr_24V_500kHz_snvsa13.png
VOUT = 24 V FS = 500 kHz
Figure 79. Output Voltage Regulation
LM46002 tc11_loadtrans_48V_to_24V_snvsa13.gif
VOUT = 24 V FS = 500 kHz VIN = 48 V
Figure 81. Load Transient Between 0.1 A and 2 A
LM46002 3p3_500k_TDTJ.png
VOUT = 3.3 V FS = 500 kHz RθJA = 20°C/W
Figure 83. Derating Curve with RθJA = 20°C/W
LM46002 5_200k_TDTJ.png
VOUT = 5 V FS = 200 kHz RθJA = 20°C/W
Figure 85. Derating Curve with RθJA = 20°C/W
LM46002 3p3V_500k_Fsw_PFM.png
VOUT = 3.3 V FS = 500 kHz
Figure 87. Switching Frequency vs IOUT in PFM Operation
LM46002 Scope_CCM.gif
VOUT = 3.3 V FS = 500 kHz IOUT = 2 A
Figure 89. Switching Waveform in CCM Operation
LM46002 Scope_PFM.gif
VOUT = 3.3 V FS = 500 kHz IOUT = 5 mA
Figure 91. Switching Waveform in PFM Operation
LM46002 tc02_startup_3p3V_1A_snvsa13.gif
VIN = 24 V VOUT = 3.3 V RLOAD = 3.3 Ω
Figure 93. Startup Into Half Load with Internal Soft-Start Rate
LM46002 tc04_prebias_3p3V_0A_snvsa13.gif
VIN = 24 V VOUT = 3.3 V RLOAD = Open
Figure 95. Startup Into 1.5 V Pre-biased Voltage
LM46002 tc12_linetrans_12V_to_36V_2A_snvsa13.gif
VOUT = 3.3 V FS = 500 kHz IOUT = 2 A
Figure 97. Line Transient: VIN Transitions Between 12 V and 36 V, 1 V/µs Slew Rate
LM46002 tc14_shortcut_release_500k_snvsa13.gif
VOUT = 3.3 V FS = 500 kHz VIN = 24 V
Figure 99. Short Circuit Protection and Recover
LM46002 C001_eff_3p3V_500kHz_snvsa13.png
VOUT = 3.3 V FS = 500 kHz
Figure 48. Efficiency
LM46002 C013_dropo_3p3V_500kHz_snvsa13.png
VOUT = 3.3 V FS = 500 kHz
Figure 50. Drop-Out Curve
LM46002 3p3_500k_TDTa.png
VOUT = 3.3 V FS = 500 kHz VIN = 24 V
Figure 52. Derating Curve
LM46002 C003_eff_5V_500kHz_snvsa13.png
VOUT = 5 V FS = 500 kHz
Figure 54. Efficiency
LM46002 C015_dropo_5V_500kHz_snvsa13.png
VOUT = 5 V FS = 500 kHz
Figure 56. Dropout Curve
LM46002 5_500k_TDTa.png
VOUT = 5 V FS = 500 kHz VIN = 24 V
Figure 58. Derating Curve
LM46002 C002_eff_5V_200kHz_snvsa13.png
VOUT = 5 V FS = 200 kHz
Figure 60. Efficiency
LM46002 C014_dropo_5V_200kHz_snvsa13.png
VOUT = 5 V FS = 200 kHz
Figure 62. Dropout Curve
LM46002 5_200k_TDTa.png
VOUT = 5 V FS = 200 kHz
Figure 64. Derating Curve
LM46002 C004_eff_5V_1MHz_snvsa13.png
VOUT = 5 V FS = 1 MHz VIN = 24 V
Figure 66. Efficiency
LM46002 C016_dropo_5V_1MHz_snvsa13.png
VOUT = 5 V FS = 1 MHz
Figure 68. Dropout Curve
LM46002 5_1M_TDTa.png
VOUT = 5 V FS = 1 MHz VIN = 24 V
Figure 70. Derating Curve
LM46002 C005_eff_12V_500kHz_snvsa13.png
VOUT = 12 V FS = 500 kHz
Figure 72. Efficiency
LM46002 C017_dropo_12V_500kHz_snvsa13.png
VOUT = 12 V FS = 500 kHz
Figure 74. Dropout Curve
LM46002 12_500k_TDTa.png
VOUT = 12 V FS = 500 kHz VIN = 24 V
Figure 76. Derating Curve
LM46002 C006_eff_24V_500kHz_snvsa13.png
VOUT = 24 V FS = 500 kHz
Figure 78. Efficiency
LM46002 C018_dropo_24V_500kHz_snvsa13.png
VOUT = 24 V FS = 500 kHz
Figure 80. Dropout Curve
LM46002 24_500k_TDTa.png
VOUT = 24 V FS = 500 kHz VIN = 48 V
Figure 82. Derating Curve
LM46002 5_500k_TDTJ.png
VOUT = 5 V FS = 500 kHz RθJA = 20°C/W
Figure 84. Derating Curve with RθJA = 20°C/W
LM46002 5_1M_TDTJ.png
VOUT = 5 V FS = 1 MHz RθJA = 20°C/W
Figure 86. Derating Curve with RθJA = 20°C/W
LM46002 5V_1M_Fsw_PFM.png
VOUT = 5 V FS = 1 MHz
Figure 88. Switching Frequency vs IOUT in PFM Operation
LM46002 Scope_DCM.gif
VOUT = 3.3 V FS = 500 kHz IOUT = 130 mA
Figure 90. Switching Waveform in DCM Operation
LM46002 tc01_startup_3p3V_2A_snvsa13.gif
VIN = 24 V VOUT = 3.3 V RLOAD = 1.65 Ω
Figure 92. Startup Into Full Load with Internal Soft-Start Rate
LM46002 tc03_startup_3p3V_0p1A_snvsa13.gif
VIN = 24 V VOUT = 3.3 V RLOAD = 33 Ω
Figure 94. Startup Into 100 mA with Internal Soft-Start Rate
LM46002 tc05_startup_12V_2A_snvsa13.gif
VIN = 24 V VOUT = 12 V RLOAD = 6 Ω
Figure 96. Startup with External Capacitor CSS
LM46002 tc13_linetrans_12V_to_36V_0p5A_snvsa13.gif
VOUT = 3.3 V FS = 500 kHz IOUT = 0.5 A
Figure 98. Line Transient: VIN Transitions Between 12 V and 36 V, 1 V/µs Slew Rate