ZHCSGO2H September   2003  – November 2018 LM5007

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      典型应用原理图
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Hysteretic Control Circuit Overview
      2. 7.3.2 High-Voltage Bias Supply Regulator
      3. 7.3.3 Overvoltage Comparator
      4. 7.3.4 On-Time Generator and Shutdown
      5. 7.3.5 Overcurrent Protection
      6. 7.3.6 N-Channel Buck Switch and Driver
      7. 7.3.7 Thermal Protection
      8. 7.3.8 Minimum Load Current
      9. 7.3.9 Ripple Configuration
    4. 7.4 Device Functional Modes
      1. 7.4.1 Standby Mode with VIN
      2. 7.4.2 Shutdown Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Custom Design With Excel Quickstart Tool
        3. 8.2.2.3 Feedback Resistors, RFB1 and RFB2
        4. 8.2.2.4 Switching Frequency Selection, RON
        5. 8.2.2.5 Buck Inductor, L1
        6. 8.2.2.6 Output Capacitor, COUT
        7. 8.2.2.7 Type I Ripple Circuit, RC
        8. 8.2.2.8 Input Capacitor, CIN
        9. 8.2.2.9 Current Limit, RCL
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 第三方米6体育平台手机版_好二三四免责声明
      2. 11.1.2 使用 WEBENCH® 工具创建定制设计
      3. 11.1.3 开发支持
    2. 11.2 文档支持
      1. 11.2.1 相关文档
        1. 11.2.1.1 PCB 布局资源
        2. 11.2.1.2 热设计资源
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 术语表
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Layout Guidelines

The LM5007 regulation and overvoltage comparators are very fast, and as such respond to short-duration noise pulses. Layout considerations are therefore critical for optimum performance:

  1. Minimize the area of the high di/dt switching current loop consisting of the VIN and SW pins, freewheeling power diode, and input ceramic capacitor. Keep the input capacitor(s) close to the VIN pin of the LM5007. Place the cathode of the freewheeling diode close to the SW pin and and its anode near the return terminal of the input capacitor as illustrated in Figure 10. Route a short, direct connection to the RTN pin using polygon copper pours under the IC.
  2. Place the inductor close to the SW pin of the LM5007. Minimize SW node copper area to reduce radiated noise related to high dv/dt.
  3. Locate CBST, RCL, RON and CVCC components as physically close as possible to their respective pins, thereby minimizing noise pickup in the printed-circuit tracks.
  4. Locate the VOUT sense trace away from noise sources such as inductors. Place both feedback resistors close to the FB pin to minimize the length of the FB trace.
  5. Place a solid GND plane on layer 2 of the PCB.

If the internal dissipation of the LM5007 converter produces excessive junction temperatures during normal operation, optimal use of the PCB ground plane can help considerably to dissipate heat. The exposed pad on the bottom of the WSON-8 package can be soldered to a ground plane on the PCB, and that plane should extend out from beneath the IC to help dissipate the heat. Additionally, the use of wide PCB traces for power connection can also help conduct heat away from the IC. Judicious positioning of the LM5007 converter within the end product, along with use of any available air flow (forced or natural convection), can help reduce the operating junction temperature.