ZHCSCT1A April   2014  – August 2014 LM5066I

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 简化电路原理图
  5. 修订历史记录
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Handling Ratings
    2. 8.2 Recommended Operating Conditions
    3. 8.3 Thermal Information
    4. 8.4 Electrical Characteristics
    5. 8.5 SMBus Communications Timing Requirements and Definitions
    6. 8.6 Switching Characteristics
    7. 8.7 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Current Limit
      2. 9.3.2 Circuit Breaker
      3. 9.3.3 Power Limit
      4. 9.3.4 UVLO
      5. 9.3.5 OVLO
      6. 9.3.6 Power Good Pin
      7. 9.3.7 VDD Sub-Regulator
      8. 9.3.8 Remote Temperature Sensing
      9. 9.3.9 Damaged MOSFET Detection
    4. 9.4 Device Functional Modes
      1. 9.4.1 Power-Up Sequence
      2. 9.4.2 Gate Control
      3. 9.4.3 Fault Timer and Restart
      4. 9.4.4 Shutdown Control
      5. 9.4.5 Enabling/Disabling and Resetting
    5. 9.5 Programming
      1. 9.5.1 PMBus Command Support
      2. 9.5.2 Standard PMBus Commands
        1. 9.5.2.1  OPERATION (01h)
        2. 9.5.2.2  CLEAR_FAULTS (03h)
        3. 9.5.2.3  CAPABILITY (19h)
        4. 9.5.2.4  VOUT_UV_WARN_LIMIT (43h)
        5. 9.5.2.5  OT_FAULT_LIMIT (4Fh)
        6. 9.5.2.6  OT_WARN_LIMIT (51h)
        7. 9.5.2.7  VIN_OV_WARN_LIMIT (57h)
        8. 9.5.2.8  VIN_UV_WARN_LIMIT (58h)
        9. 9.5.2.9  STATUS_BYTE (78h)
        10. 9.5.2.10 STATUS_WORD (79h)
        11. 9.5.2.11 STATUS_VOUT (7Ah)
        12. 9.5.2.12 STATUS_INPUT (7Ch)
        13. 9.5.2.13 STATUS_TEMPERATURE (7dh)
        14. 9.5.2.14 STATUS_CML (7Eh)
        15. 9.5.2.15 STATUS_OTHER (7Fh)
        16. 9.5.2.16 STATUS_MFR_SPECIFIC (80h)
        17. 9.5.2.17 READ_EIN (86h)
        18. 9.5.2.18 READ_VIN (88h)
        19. 9.5.2.19 READ_IIN (89h)
        20. 9.5.2.20 READ_VOUT (8Bh)
        21. 9.5.2.21 READ_TEMPERATURE_1 (8Dh)
        22. 9.5.2.22 READ_PIN (97h)
        23. 9.5.2.23 MFR_ID (99h)
        24. 9.5.2.24 MFR_MODEL (9Ah)
        25. 9.5.2.25 MFR_REVISION (9Bh)
      3. 9.5.3 Manufacturer Specific PMBus Commands
        1. 9.5.3.1  MFR_SPECIFIC_00: READ_VAUX (D0h)
        2. 9.5.3.2  MFR_SPECIFIC_01: MFR_READ_IIN (D1h)
        3. 9.5.3.3  MFR_SPECIFIC_02: MFR_READ_PIN (D2h)
        4. 9.5.3.4  MFR_SPECIFIC_03: MFR_IN_OC_WARN_LIMIT (D3h)
        5. 9.5.3.5  MFR_SPECIFIC_04: MFR_PIN_OP_WARN_LIMIT (D4h)
        6. 9.5.3.6  MFR_SPECIFIC_05: READ_PIN_PEAK (D5h)
        7. 9.5.3.7  MFR_SPECIFIC_06: CLEAR_PIN_PEAK (D6h)
        8. 9.5.3.8  MFR_SPECIFIC_07: GATE_MASK (D7h)
        9. 9.5.3.9  MFR_SPECIFIC_08: ALERT_MASK (D8h)
        10. 9.5.3.10 MFR_SPECIFIC_09: DEVICE_SETUP (D9h)
        11. 9.5.3.11 MFR_SPECIFIC_10: BLOCK_READ (DAh)
        12. 9.5.3.12 MFR_SPECIFIC_11: SAMPLES_FOR_AVG (DBh)
        13. 9.5.3.13 MFR_SPECIFIC_12: READ_AVG_VIN (DCh)
        14. 9.5.3.14 MFR_SPECIFIC_13: READ_AVG_VOUT (DDh)
        15. 9.5.3.15 MFR_SPECIFIC_14: READ_AVG_IIN (DEh)
        16. 9.5.3.16 MFR_SPECIFIC_14: READ_AVG_PIN (DFh)
        17. 9.5.3.17 MFR_SPECIFIC_15: READ_AVG_PIN
        18. 9.5.3.18 MFR_SPECIFIC_16: BLACK_BOX_READ (E0h)
        19. 9.5.3.19 MFR_SPECIFIC_17: READ_DIAGNOSTIC_WORD (E1h)
        20. 9.5.3.20 MFR_SPECIFIC_18: AVG_BLOCK_READ (E2h)
      4. 9.5.4 Reading and Writing Telemetry Data and Warning Thresholds
      5. 9.5.5 Determining Telemetry Coefficients Empirically With Linear Fit
      6. 9.5.6 Writing Telemetry Data
      7. 9.5.7 PMBus Address Lines (ADR0, ADR1, ADR2)
      8. 9.5.8 SMBA Response
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 48-V, 10-A PMBus Hotswap Design
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design-In Procedure
          1. 10.2.1.2.1 Select RSNS and CL Setting
          2. 10.2.1.2.2 Selecting the Hotswap FETs
          3. 10.2.1.2.3 Select Power Limit
          4. 10.2.1.2.4 Set Fault Timer
          5. 10.2.1.2.5 Check MOSFET SOA
          6. 10.2.1.2.6 Set UVLO and OVLO Thresholds
            1. 10.2.1.2.6.1 Option A
            2. 10.2.1.2.6.2 Option B
            3. 10.2.1.2.6.3 Option C
            4. 10.2.1.2.6.4 Option D
          7. 10.2.1.2.7 Power Good Pin
          8. 10.2.1.2.8 Input and Output Protection
          9. 10.2.1.2.9 Final Schematic and Component Values
        3. 10.2.1.3 Application Curves
      2. 10.2.2 48-V, 20-A PMBus Hotswap Design
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
          1. 10.2.2.2.1  Selecting the Sense Resistor and CL Setting
          2. 10.2.2.2.2  Selecting the Hotswap FETs
          3. 10.2.2.2.3  Select Power Limit
          4. 10.2.2.2.4  Set Fault Timer
          5. 10.2.2.2.5  Check MOSFET SOA
          6. 10.2.2.2.6  Switching to dv/dt-Based Start-Up
          7. 10.2.2.2.7  Choosing the VOUT Slew Rate
          8. 10.2.2.2.8  Select Power Limit and Fault Timer
          9. 10.2.2.2.9  Chose Input and Output Protection and Set Undervoltage, Overvoltage, and Power Good Thresholds
          10. 10.2.2.2.10 Final Schematic and Component Values
        3. 10.2.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13器件和文档支持
    1. 13.1 商标
    2. 13.2 静电放电警告
    3. 13.3 术语表
  14. 14机械封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

8 Specifications

8.1 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature –65 150 °C
VESD(1) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins except GATE(2) –2 2 kV
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(3) –500 500 V
(1) The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin. 2-kV rating for all pins except GATE which is rated for 1 kV.
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN, SENSE, OUT voltage 10 80 V
Junction temperature –40 125 °C

8.3 Thermal Information

THERMAL METRIC(1) LM5066I UNIT
PWP
28 PINS
RθJA Junction-to-ambient thermal resistance(2) 35.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance(3) 19.9
RθJB Junction-to-board thermal resistance(4) 16.8
ψJT Junction-to-top characterization parameter(5) 0.5
ψJB Junction-to-board characterization parameter(6) 16.7
RθJC(bot) Junction-to-case (bottom) thermal resistance(7) 2.9
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

8.4 Electrical Characteristics

Unless otherwise stated, the following conditions apply: VVIN = 48 V, –40°C < TJ < 125°C, VUVLO = 3 V , VOVLO = 0 V, RPWR= 20 kΩ. See (1).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT (VIN PIN)
IIN-EN Input current, enabled VUVLO = 3 V and VOVLO = 2 V 5.6 7 mA
PORIT Power-on reset threshold at VVIN to trigger insertion timer VVIN increasing 7.8 9.0 V
POREN Power-on reset threshold at VVIN to enable all functions VVIN increasing 8.6 9.9 V
PORHYS POREN hysteresis VVIN decreasing 100 mV
VDD REGULATOR (VDD PIN)
VDD IVDD = 0 mA 4.60 4.90 5.15 V
IVDD = 10 mA 4.60 4.85 5.15 V
VDDILIM VVDD current limit –50 –30 –15 mA
VDDPOR VVDD voltage reset threshold VVDD rising 4.1 V
UVLO/EN, OVLO PINS
UVLOTH UVLO threshold VUVLO falling 2.41 2.48 2.55 V
UVLOHYS UVLO hysteresis current VUVLO = 1 V 16 20 24 µA
UVLOBIAS UVLO bias current VUVLO = 3 V 1 µA
OVLOTH OVLO threshold VOVLO rising 2.39 2.46 2.53 V
OVLOHYS OVLO hysteresis current VOVLO= 1 V –24 –21 –16 µA
OVLOBIAS OVLO bias current VOVLO = 1 V 1 µA
POWER GOOD (PGD PIN)
PGDVOL Output low voltage ISINK = 2 mA 100 400 mV
PGDIOH Off leakage current VPGD = 80 V 1 µA
FB PIN
FBTH FB threshold VUVLO = 3 V and VOVLO = 2 V 2.41 2.46 2.52 V
FBHYS FB hysteresis current –25 –20 –15 µA
FBLEAK Off leakage current VFB = 2.3 V 1 µA
POWER LIMIT (PWR PIN)
Power limit sense voltage (VVIN_K – VSENSE) VSENSE – VOUT = 48 V, RPWR = 60 kΩ 7.4 9.4 11.4 mV
VSENSE – VOUT = 48 V, RPWR = 20 kΩ 1.5 3.5 5.7 mV
VSENSE – VOUT = 48 V, RPWR = 20 kΩ,
TJ = 0°C to 85°C
1.85 3.5 5.02 mV
VSENSE – VOUT = 24 V, RPWR = 60 kΩ 15 18.75 22.5 mV
VSENSE – VOUT = 24 V, RPWR = 20 kΩ 5 7.23 10 mV
IPWR PWR pin current VPWR = 2.5 V -20 µA
RSAT(PWR) PWR pin impedance when disabled VUVLO = 2 V 120 Ω
GATE CONTROL (GATE PIN)
IGATE Source current Normal operation –40 –20 –7.5 µA
Fault sink current VUVLO = 2 V 3.4 4.2 5.3 mA
POR circuit breaker sink current VVIN_K – VSENSE = 60 mV or VVIN < PORIT, VGATE = 5 V, OUT = 0 V,
CB/CL ratio bit = 0, CL = 1
90 160 230 mA
VGATEZ Reverse-bias voltage of GATE to OUT Zener diode, IZ = –100 µA VGATE– VOUT 15 16.5 18 V
VGATECP Peak charge pump voltage in normal operation
(VIN = VOUT)
VGATE– VOUT 11 13 15 V
OUT PIN
IOUT-EN OUT bias current, enabled VIN = VOUT, normal operation 60 80 100 µA
IOUT-DIS OUT bias current, disabled (2) Disabled, OUT = 0 V, VVIN_K = VSENSE –65 –50 –35 µA
CURRENT LIMIT
VCL Current limit threshold voltage
(VVIN_K – VSENSE)
CL = VDD 23.4 26 28.6 mV
CL = GND 45 50 55
ISENSE SENSE input current Enabled, SENSE = OUT 20 25 35 µA
Disabled, OUT = 0 V 66
Enabled, OUT = 0 V 190 220 250
CIRCUIT BREAKER
RTCB Circuit breaker to current limit ratio:
(VVIN_K – VSENSE)CB/VCL
CB/CL ratio bit = 0, ILIM = 50 mV 1.64 1.94 2.23 V/V
CB/CL ratio bit = 1, ILIM = 50 mV 3.28 3.87 4.45
CB/CL ratio bit = 0, ILIM = 26 mV 1.5 1.88 2.3
CB/CL ratio bit = 1, ILIM = 26 mV 3.1 3.75 4.45
VCB Circuit breaker threshold voltage: (VVIN_K – VSENSE) CB/CL ratio bit = 0, ILIM = 50 mV 76 96 116 mV
CB/CL ratio bit = 1, ILIM = 50 mV 155 193 235
CB/CL ratio bit = 0, ILIM = 26 mV 38 48 58
CB/CL ratio bit = 1, ILIM = 26 mV 76 96 116
TIMER (TIMER PIN)
VTMRH Upper threshold 3.74 3.9 4.07 V
VTMRL Lower threshold Restart cycles 1 1.2 1.4 V
End of eighth cycle re-enable threshold 0.3 V
ITIMER Insertion time current TIMER pin = 2 V –5.9 –4.8 –3.3 µA
Sink current, end of insertion time 0.9 1.5 2.1 mA
Fault detection current –90 –75 –60 µA
Fault sink current 1.7 2.5 3.2 µA
DCFAULT Fault restart duty cycle 0.5%
INTERNAL REFERENCE
VREF Reference voltage 2.93 2.97 3.02 V
ADC AND MUX
Resolution 12 Bits
INL Integral non-linearity ADC only ±4 LSB
tACQUIRE Acquisition + conversion time Any channel 100 µs
tRR Acquisition round robin time Cycle all channels 1 ms
TELEMETRY ACCURACY
IINFSR Current input full-scale range CL = GND 50 54.4 58 mV
CL = VDD 26 27.0 29 mV
IINLSB Current input LSB CL = GND 13.30 µV
CL = VDD 6.70 µV
VAUXFSR VAUX input full-scale range 2.93 2.97 3.01 V
VAUXLSB VAUX input LSB 725 µV
VINFSR Input voltage full-scale range 86 88.9 91 V
VINLSB Input voltage LSB 21.7 mV
VOUTFSR Output voltage full-scale range 86 88.9 91 V
VOUTLSB Output voltage LSB 21.7 mV
IINACC Input current absolute accuracy VVIN_K – VSENSE = 22 mV (80% IINFSR),
CL = VDD
–1.75 % +1.75
VVIN_K – VSENSE = 5 mV (19% IINFSR),
CL = VDD
–6.0 % +6.0
VVIN_K – VSENSE = 44 mV (80% IINFSR),
CL = GND
–3.5 % +3.5
VACC VIN, VOUT absolute accuracy VVIN, VVOUT = 48, 80 V –1.25 % +1.25
VVIN, VVOUT = 10 V –2.5 % +2.5
VAUX absolute accuracy VAUX = 2.8 V –1.25 % +1.25
PINACC Input power accuracy VVIN = 48 V, VVIN_K – VSENSE = 22 mV (80% IINFSR), CL = VDD –2.5 % +2.5
VVIN = 48 V, VVIN_K – VSENSE = 5 mV (19% IINFSR), CL = VDD –6.5 % +6.5
VVIN = 48V , VVIN_K – VSENSE= 44 mV (80% IINFSR), CL = GND –4.5 % +4.5
REMOTE DIODE TEMPERATURE SENSOR
TACC Temperature accuracy using local diode TA = 25°C to 85°C 2 10 °C
Remote diode resolution 9 bits
IDIODE External diode current source High level 250 325 µA
Low level 9.4 µA
Diode current ratio 25.9 µA
PMBus PIN THRESHOLDS (SMBA, SDA, SCL)
VIL Data, clock input low voltage 0.9 V
VIH Data, clock input high voltage 2.1 5.5 V
VOL Data output low voltage ISINK = 3 mA 0 0.4 V
ILEAK Input leakage current SDAI,SMBA,SCL = 5 V 1 µA
CONFIGURATION PIN THRESHOLDS (CL, RETRY)
VIH Threshold voltage 3 V
ILEAK Input leakage current CL, RETRY = 5 V 5 µA
(1) Current out of a pin is indicated as a negative value.
(2) OUT bias current (disabled) due to leakage current through an internal 1-MΩ resistance from SENSE to VOUT.

8.5 SMBus Communications Timing Requirements and Definitions

PARAMETER MIN MAX UNIT
ƒSMB SMBus operating frequency 10 400 kHz
tBUF Bus free time between stop and start condition 1.3 µs
tHD:STA Hold time after (repeated) start condition. After this period, the first clock is generated. 0.6 µs
tSU:STA Repeated start condition setup time 0.6 µs
tSU:STO Stop condition setup time 0.6 µs
tHD:DAT Data hold time 85 ns
tSU:DAT Data setup time 100 ns
tTIMEOUT Clock low time-out(1) 25 35 ms
tLOW Clock low period 1.5 µs
tHIGH Clock high period(2) 0.6 µs
tLOW:SEXT Cumulative clock low extend time (slave device)(3) 25 ms
tLOW:MEXT Cumulative low extend time (master device)(4) 10 ms
tF Clock or data fall time(5) 20 300 ns
tR Clock or data rise time(5) 20 300 ns
(1) Devices participating in a transfer will timeout when any clock low exceeds the value of tTIMEOUT,MIN of 25 ms. Devices that have detected a timeout condition must reset the communication no later than tTIMEOUT,MAX of 35 ms. The maximum value must be adhered to by both a master and a slave as it incorporates the cumulative stretch limit for both a master (10 ms) and a slave (25 ms).
(2) tHIGH MAX provides a simple method for devices to detect bus idle conditions.
(3) tLOW:SEXT is the cumulative time a slave device is allowed to extend the clock cycles in one message from the initial start to the stop. If a slave exceeds this time, it is expected to release both its clock and data lines and reset itself.
(4) tLOW:MEXT is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as defined from start-to-ack, ack-to-ack, or ack-to-stop.
(5) Rise and fall time is defined as follows: tR = ( VILMAX – 0.15) to (VIHMIN + 0.15);  tF = 0.9 VDD to (VILMAX – 0.15)
301159a1.gifFigure 1. SMBus Timing Diagram

8.6 Switching Characteristics

Unless otherwise stated, the following conditions apply: VVIN = 48 V, –40°C < TJ < 125°C, VUVLO = 3 V , VOVLO = 0 V, RPWR= 20 kΩ.
PARAMETER CONDITIONS MIN TYP MAX UNIT
UVLO/EN, OVLO PINS
UVLODEL UVLO delay Delay to GATE high 7 9.6 12.2 µs
Delay to GATE low 6 8.5 11
OVLODEL OVLO delay Delay to GATE high 7 9.6 12.2 µs
Delay to GATE low 6 8.5 11
FB PIN
FBDEL FB Delay Delay to PGD high 5 7.6 10 µs
Delay to PGD low 7 9.2 12.5
CURRENT LIMIT
tCL Response time VIN-SENSE stepped from 0 to 80 mV; CL = GND 30 50 µs
CIRCUIT BREAKER
tCB Response time VIN-SENSE stepped from 0 to 150 mV, time to GATE low, no load 0.36 0.8 µs
TIMER (TIMER PIN)
tFAULT_DELAY Fault to GATE low delay TIMER pin reaches the upper threshold 12 µs

8.7 Typical Characteristics

Unless otherwise specified, the following conditions apply: TJ = 25°C, VIN = 48 V. All graphs show junction temperature.
C001_SNVS950.png
Figure 2. Input Current vs VIN and TJ
C003_SNVS950.png
Figure 4. Gate Sourcing Current vs TJ
C005_SNVS950.png
POR event or CB triggered
Figure 6. Gate Sinking Current vs TJ
C007_SNVS950.png
Inject 100 µA into gate node. Measure GATE-SOURCE
Figure 8. Gate Clamping Voltage vs TJ
C009_SNVS950.png
Figure 10. OVLO Threshold vs TJ
C011_SNVS950.png
Figure 12. Current Limit Threshold vs TJ
C002_SNVS950.png
Device Enabled
Figure 3. Sense Current vs VOUT and TJ
C004_SNVS950.png
Figure 5. Gate Sinking Current vs TJ
C006_SNVS950.png
Figure 7. Gate Voltage vs TJ
C008_SNVS950.png
Figure 9. UVLO/EN Threshold vs TJ
C010_SNVS950.png
Figure 11. Power Good Feedback Threshold vs TJ