ZHCSKN8A december   2019  – april 2023 LM5163H-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Control Architecture
      2. 7.3.2  Internal VCC Regulator and Bootstrap Capacitor
      3. 7.3.3  Regulation Comparator
      4. 7.3.4  Internal Soft Start
      5. 7.3.5  On-Time Generator
      6. 7.3.6  Current Limit
      7. 7.3.7  N-Channel Buck Switch and Driver
      8. 7.3.8  Synchronous Rectifier
      9. 7.3.9  Enable/Undervoltage Lockout (EN/UVLO)
      10. 7.3.10 Power Good (PGOOD)
      11. 7.3.11 Thermal Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Active Mode
      3. 7.4.3 Sleep Mode
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 High Temperature Specifications
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Switching Frequency (RRON)
        3. 8.2.2.3 Buck Inductor (LO)
        4. 8.2.2.4 Output Capacitor (COUT)
        5. 8.2.2.5 Input Capacitor (CIN)
        6. 8.2.2.6 Type 3 Ripple Network
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Compact PCB Layout for EMI Reduction
        2. 8.4.1.2 Feedback Resistors
      2. 8.4.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 第三方米6体育平台手机版_好二三四免责声明
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design with WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 Trademarks
    6. 9.6 静电放电警告
    7. 9.7 术语表
  10. 10Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Buck Inductor (LO)

Use Equation 18 and Equation 19 to calculate the inductor ripple current (assuming CCM operation) and peak inductor current, respectively.

Equation 18. I L = V O U T F S W × L O × 1 - V O U T V I N
Equation 19. I L ( P E A K ) = I O U T ( m a x ) × I L 2

For most applications, choose an inductance such that the inductor ripple current, ΔIL, is between 30% and 50% of the rated load current at nominal input voltage. Use Equation 20 to calculate the inductance.

Equation 20. L O = V O U T F S W × I L × 1 - V O U T V I N ( n o m )

Choosing a 120-μH inductor in this design results in 250-mA peak-to-peak ripple current at a nominal input voltage of 48 V, equivalent to 50% of the 500-mA rated load current.

Check the inductor data sheet to make sure the saturation current of the inductor is well above the current limit setting of the LM5163H-Q1. Ferrite-core inductors have relatively lower core losses and are preferred at high switching frequencies, but exhibit a hard saturation characteristic – the inductance collapses abruptly when the saturation current is exceeded. This results in an abrupt increase in inductor ripple current, higher output voltage ripple, and reduced efficiency, in turn compromising reliability. Note that inductor saturation current levels generally decrease as the core temperature increases.