ZHCSPF2A December   2021  – September 2022 LM5168 , LM5169

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Control Architecture
      2. 8.3.2  Internal VCC Regulator and Bootstrap Capacitor
      3. 8.3.3  Internal Soft Start
      4. 8.3.4  On-Time Generator
      5. 8.3.5  Current Limit
      6. 8.3.6  N-Channel Buck Switch and Driver
      7. 8.3.7  Synchronous Rectifier
      8. 8.3.8  Enable, Undervoltage Lockout (EN/UVLO)
      9. 8.3.9  Power Good (PGOOD)
      10. 8.3.10 Thermal Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Active Mode
      3. 8.4.3 Sleep Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Fly-Buck™ Converter Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Switching Frequency (RT)
        2. 9.2.2.2  Transformer Selection
        3. 9.2.2.3  Output Capacitor Selection
        4. 9.2.2.4  Secondary Output Diode
        5. 9.2.2.5  Setting Output Voltage
        6. 9.2.2.6  Input Capacitor
        7. 9.2.2.7  Type-3 Ripple Network
        8. 9.2.2.8  CBST Selection
        9. 9.2.2.9  Minimum Secondary Output Load
        10. 9.2.2.10 Example Design Summary
      3. 9.2.3 Application Curves
    3. 9.3 Typical Buck Application
      1. 9.3.1 Design Requirements
      2. 9.3.2 Detailed Design Procedure
        1. 9.3.2.1 Switching Frequency (RT)
        2. 9.3.2.2 Buck Inductor Selection
        3. 9.3.2.3 Setting the Output Voltage
        4. 9.3.2.4 Type-3 Ripple Network
        5. 9.3.2.5 Output Capacitor Selection
        6. 9.3.2.6 Input Capacitor Considerations
        7. 9.3.2.7 CBST Selection
        8. 9.3.2.8 Example Design Summary
      3. 9.3.3 Application Curves
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Thermal Considerations
      2. 9.5.2 Typical EMI Results
      3. 9.5.3 Layout Guidelines
        1. 9.5.3.1 Compact PCB Layout for EMI Reduction
        2. 9.5.3.2 Feedback Resistors
      4. 9.5.4 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 第三方米6体育平台手机版_好二三四免责声明
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 接收文档更新通知
    4. 10.4 支持资源
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 术语表
  11. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Output Capacitor Selection

The primary output capacitor, COUT1, can be selected using either Equation 14 or Equation 15. For this design, an output voltage ripple of 5 mV and a load transient of 0.2 V is used. From this, a ripple current of 0.34 A at 60-V input, and a peak transformer current of 0.77 A at full load is calculated. The two output capacitor equations give values of 11 μF and 5 μF. Because of the large derating of ceramic capacitors, COUT1 = 1 × 22 μF is used. Keep in mind that the equations give the minimum capacitance value and in no case should the capacitance of COUT1 be less than 2.2 μF. More output capacitance can be used to improve load transient response. Also note that when using type 3 ripple injection, the actual ripple voltage appearing on the output can be kept small.

Equation 14.

where

  • IPK = peak transformer current from Equation 13
  • ΔVO = output voltage load transient
Equation 15.

where

  • ΔI = ripple current from Equation 12
  • Vripple = ripple voltage on primary output

COUT2 is selected using Equation 16. In this case, a ripple voltage on the secondary otuput of 20 mV is chosen. The minimum input voltage must be used in this equation. A value of 10 μF is calculated and 1 × 22 μF for COUT2 is selected. Again, the equation gives the minimum capacitance value and in no case should the capacitance of COUT2 be less than 2.2 μF.

Equation 16.

Both output capacitors should be X7R ceramics in a 1206 or 1210 case size, and rated for at least twice the output voltage.