ZHCSWL4 June   2024 LM5171

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 引脚配置和功能
  6. 规格
    1. 5.1 绝对最大额定值
    2. 5.2 ESD 等级
    3. 5.3 建议运行条件
    4. 5.4 热性能信息
    5. 5.5 电气特性
    6. 5.6 时序要求
    7. 5.7 典型特性
  7. 详细说明
    1. 6.1 概述
      1. 6.1.1 器件配置 (CFG) 和 I2C 地址
      2. 6.1.2 IC 运行模式的定义
    2. 6.2 功能方框图
    3. 6.3 特性说明
      1. 6.3.1  辅助电源和电压基准(VCC、VDD 和 VREF)
      2. 6.3.2  欠压锁定 (UVLO) 和控制器启用或禁用
      3. 6.3.3  高电压输入(HV1、HV2)
      4. 6.3.4  电流检测放大器
      5. 6.3.5  控制命令
        1. 6.3.5.1 通道使能命令(EN1、EN2)
        2. 6.3.5.2 方向命令(DIR1 和 DIR2)
        3. 6.3.5.3 通道电流设置命令(ISET1 和 ISET2)
      6. 6.3.6  通道电流监测器(IMON1、IMON2)
        1. 6.3.6.1 单个通道电流监测器
        2. 6.3.6.2 多相总电流监测
      7. 6.3.7  逐周期峰值电流限制 (IPK)
      8. 6.3.8  内部电流环路误差放大器
      9. 6.3.9  外部电压环路误差放大器
      10. 6.3.10 软启动、二极管仿真和强制 PWM 控制(SS/DEM1 和 SS/DEM2)
        1. 6.3.10.1 通过 SS/DEM 引脚进行软启动控制
        2. 6.3.10.2 DEM 编程
        3. 6.3.10.3 FPWM 编程以及动态 FPWM 和 DEM 更改
        4. 6.3.10.4 SS 引脚作为重启计时器
          1. 6.3.10.4.1 OVP 中的重启计时器
          2. 6.3.10.4.2 DIR 更改后的重启计时器
      11. 6.3.11 栅极驱动输出、死区时间编程和自适应死区时间(HO1、HO2、LO1、LO2、DT/SD)
      12. 6.3.12 紧急锁存关断 (DT/SD)
      13. 6.3.13 PWM 比较器
      14. 6.3.14 振荡器 (OSC)
      15. 6.3.15 同步到外部时钟(SYNCI、SYNCO)
      16. 6.3.16 过压保护 (OVP)
      17. 6.3.17 多相配置(SYNCO、OPT)
        1. 6.3.17.1 多相星型配置
        2. 6.3.17.2 两相、三相或四相并行运行菊花链配置
        3. 6.3.17.3 六相或八相并行运行菊花链配置
      18. 6.3.18 热关断
    4. 6.4 编程
      1. 6.4.1 动态死区时间调整
      2. 6.4.2 UVLO 编程
    5. 6.5 寄存器
      1. 6.5.1 I2C 串行接口
      2. 6.5.2 I2C 总线运行
      3. 6.5.3 时钟延展
      4. 6.5.4 数据传输格式
      5. 6.5.5 从定义的寄存器地址进行单次读取
      6. 6.5.6 从定义的寄存器地址开始进行顺序读取
      7. 6.5.7 对定义的寄存器地址进行单次写入
      8. 6.5.8 从定义的寄存器地址开始进行顺序写入
      9. 6.5.9 REGFIELD 寄存器
  8. 应用和实施
    1. 7.1 应用信息
      1. 7.1.1 小信号模型
        1. 7.1.1.1 电流环路小信号模型
        2. 7.1.1.2 电流环路补偿
        3. 7.1.1.3 电压环路小信号模型
        4. 7.1.1.4 电压环路补偿
    2. 7.2 典型应用
      1. 7.2.1 60A、双相、48V 至 12V 双向转换器
        1. 7.2.1.1 设计要求
        2. 7.2.1.2 详细设计过程
          1. 7.2.1.2.1  确定占空比
          2. 7.2.1.2.2  振荡器编程
          3. 7.2.1.2.3  功率电感器、RMS 和峰值电流
          4. 7.2.1.2.4  电流检测 (RCS)
          5. 7.2.1.2.5  电流设置限制 (ISETx)
          6. 7.2.1.2.6  峰值电流限制
          7. 7.2.1.2.7  功率 MOSFET
          8. 7.2.1.2.8  辅助电源
          9. 7.2.1.2.9  自举二极管
          10. 7.2.1.2.10 OVP
          11. 7.2.1.2.11 死区时间
          12. 7.2.1.2.12 通道电流监测器 (IMONx)
          13. 7.2.1.2.13 UVLO 引脚用途
          14. 7.2.1.2.14 HVx 引脚配置
          15. 7.2.1.2.15 环路补偿
          16. 7.2.1.2.16 软启动
          17. 7.2.1.2.17 PWM 转换为 ISET 引脚上的电压
          18. 7.2.1.2.18 正确端接未使用的引脚
        3. 7.2.1.3 应用曲线
          1. 7.2.1.3.1 效率
          2. 7.2.1.3.2 阶跃负载响应
          3. 7.2.1.3.3 双通道交错运行
          4. 7.2.1.3.4 典型启动和关断
          5. 7.2.1.3.5 DEM 和 FPWM
          6. 7.2.1.3.6 DEM 和 FPWM 之间的模式转换
          7. 7.2.1.3.7 ISET 跟踪和预充电
          8. 7.2.1.3.8 保护功能
    3. 7.3 电源相关建议
    4. 7.4 布局
      1. 7.4.1 布局指南
      2. 7.4.2 布局示例
  9. 器件和文档支持
    1. 8.1 器件支持
      1. 8.1.1 开发支持
    2. 8.2 接收文档更新通知
    3. 8.3 支持资源
    4. 8.4 商标
    5. 8.5 静电放电警告
    6. 8.6 术语表
  10. 修订历史记录
  11. 10机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

I2C 总线运行

I2C 总线是控制器与一系列外设之间的通信链路。该链路是使用一条双线总线建立的,这条总线包含串行时钟信号 (SCL) 和串行数据信号 (SDA)。在串行数据线路用于控制器与外设终端之间双向数据通信的所有情况下,串行时钟均来源于控制器。每个器件都有一个开漏输出可用于在串行数据线路 (SDA) 上传输数据。为了在数据传输期间将漏极输出拉至高电平,必须在串行数据线路上放置一个外部上拉电阻器。该器件上配有一个外设 I2C 接口,这个接口支持以标准模式、快速模式和快速+ 模式运行,数据速率分别高达 100kbit/s、400kbit/s 和 1000kbit/s,并可实现与 I2C 标准 3.0 兼容的自动递增寻址。如下图所示,数据传输由一个来自控制器的起始位启动。在 SCL 信号的高电平期间,当 SDA 线路从高电平转换为低电平时,会识别到启动条件。接收到起始位后,该器件将在 SDA 输入端接收串行数据,并检查是否存在有效地址和控制信息。如果为器件设置了外设地址位,则器件会发出确认脉冲并准备接收寄存器地址和数据。在接收到停止条件或接收到发送给器件的数据字时,数据传输即完成。停止条件是指在 SCL 信号的高电平期间,SDA 输入从低电平转换到高电平。SDA 线路的所有其他转换必须在 SCL 信号的低电平期间完成。在接收到有效地址、子地址和数据字后,会发出确认。I2C 接口通过寄存器地址实现自动定序,以便在一次给定的 I2C 传输中可以发送多个数据字。
LM5171 I2C 启动/停止/确认协议图 6-33 I2C 启动/停止/确认协议
LM5171 I2C 数据传输时序图 6-34 I2C 数据传输时序
LM5171 最长上升/下降时间的 I2C 数据传输时序图 6-35 最长上升/下降时间的 I2C 数据传输时序