ZHCSGN6D June   2017  – August 2021 LM5176

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Fixed Frequency Valley/Peak Current Mode Control with Slope Compensation
      2. 7.3.2  VCC Regulator and Optional BIAS Input
      3. 7.3.3  Enable/UVLO
      4. 7.3.4  Soft Start
      5. 7.3.5  Overcurrent Protection
      6. 7.3.6  Average Input/Output Current Limiting
      7. 7.3.7  Operation Above 40-V Input
      8. 7.3.8  CCM Operation
      9. 7.3.9  Frequency and Synchronization (RT/SYNC)
      10. 7.3.10 Frequency Dithering
      11. 7.3.11 Output Overvoltage Protection (OVP)
      12. 7.3.12 Power Good (PGOOD)
      13. 7.3.13 Gm Error Amplifier
      14. 7.3.14 Integrated Gate Drivers
      15. 7.3.15 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown, Standby, and Operating Modes
      2. 7.4.2 MODE Pin Configuration
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Custom Design with WEBENCH Tools
        2. 8.2.2.2  Frequency
        3. 8.2.2.3  VOUT
        4. 8.2.2.4  Inductor Selection
        5. 8.2.2.5  Output Capacitor
        6. 8.2.2.6  Input Capacitor
        7. 8.2.2.7  Sense Resistor (RSENSE)
        8. 8.2.2.8  Slope Compensation
        9. 8.2.2.9  UVLO
        10. 8.2.2.10 Soft-Start Capacitor
        11. 8.2.2.11 Dither Capacitor
        12. 8.2.2.12 MOSFETs QH1 and QL1
        13. 8.2.2.13 MOSFETs QH2 and QL2
        14. 8.2.2.14 Frequency Compensation
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 第三方米6体育平台手机版_好二三四免责声明
      2. 11.1.2 Development Support
        1. 11.1.2.1 Custom Design with WEBENCH Tools
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 接收文档更新通知
    4. 11.4 支持资源
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Overview

The LM5176 is a wide input voltage four-switch buck-boost controller IC with integrated drivers for N-channel MOSFETs. It operates in buck mode when VIN is greater than VOUT and in boost mode when VIN is less than VOUT. When VIN is close to VOUT, the device operates in a proprietary transition buck or boost mode. The control scheme provides smooth operation for any input/output combination within the specified operating range. The buck or boost transition control scheme provides a low ripple output voltage when VIN equals VOUT without compromising the efficiency.

The LM5176 integrates four N-Channel MOSFET drivers including two low-side drivers and two high-side drivers, eliminating the need for external drivers or floating bias supplies. The internal VCC regulator supplies internal bias rails as well as the MOSFET gate drivers. The VCC regulator is powered either from the input voltage through the VIN pin or from the output or an external supply through the BIAS pin for improved efficiency.

The PWM control scheme is based on valley current mode control for buck operation and peak current mode control for boost operation. The inductor current is sensed through a single sense resistor in series with the low-side MOSFETs. The sensed current is also monitored for cycle-by-cycle current limit. The behavior of the LM5176 during an overload condition is dependent on the MODE pin programming (see the Section 7.4.2 section). If hiccup mode fault protection is selected, the controller turns off after a fixed number of switching cycles in cycle-by-cycle current limit and restarts after another fixed number of clock cycles. The hiccup mode reduces the heating in the power components in a sustained overload condition. If hiccup mode is disabled through the MODE pin, the controller remains in a cycle-by-cycle current limit condition until the overload is removed.

In addition to the cycle-by-cycle current limiting, the LM5176 also provides an optional average current regulation loop that can be configured for either input or output current limiting. This is useful for battery charging or other applications where a constant current behavior may be required.

The soft-start time of LM5176 is programmed by a capacitor connected to the SS pin to minimize the inrush current and overshoot during start-up.

The precision EN/UVLO pin supports programmable input undervoltage lockout (UVLO) with hysteresis. The output overvoltage protection (OVP) feature turns off the high-side drivers when the voltage at the FB pin exceeds the output overvoltage threshold (VOVP). The PGOOD output indicates when the FB voltage is inside the PGOOD regulation window centered at VREF.