ZHCSTC5B October   2023  – June 2024 LM51772

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Handling Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Buck-Boost Control Scheme
        1. 7.3.1.1 Buck Mode
        2. 7.3.1.2 Boost Mode
        3. 7.3.1.3 Buck-Boost Mode
      2. 7.3.2  Power Save Mode
      3. 7.3.3  Programmable Conduction Mode PCM
      4. 7.3.4  Reference System
        1. 7.3.4.1 VIO LDO and nRST-PIN
      5. 7.3.5  Supply Voltage Selection – VSMART Switch and Selection Logic
      6. 7.3.6  Enable and Undervoltage Lockout
        1. 7.3.6.1 UVLO
        2. 7.3.6.2 VDET Comparator
      7. 7.3.7  Internal VCC Regulators
        1. 7.3.7.1 VCC1 Regulator
        2. 7.3.7.2 VCC2 Regulator
      8. 7.3.8  Error Amplifier and Control
        1. 7.3.8.1 Output Voltage Regulation
        2. 7.3.8.2 Output Voltage Feedback
        3. 7.3.8.3 Voltage Regulation Loop
        4. 7.3.8.4 Dynamic Voltage Scaling
      9. 7.3.9  Output Voltage Discharge
      10. 7.3.10 Peak Current Sensor
      11. 7.3.11 Short Circuit - Hiccup Protection
      12. 7.3.12 Current Monitor/Limiter
        1. 7.3.12.1 Overview
        2. 7.3.12.2 Output Current Limitation
        3. 7.3.12.3 Output Current Monitor
      13. 7.3.13 Oscillator Frequency Selection
      14. 7.3.14 Frequency Synchronization
      15. 7.3.15 Output Voltage Tracking
        1. 7.3.15.1 Analog Voltage Tracking
        2. 7.3.15.2 Digital Voltage Tracking
      16. 7.3.16 Slope Compensation
      17. 7.3.17 Configurable Soft Start
      18. 7.3.18 Drive Pin
      19. 7.3.19 Dual Random Spread Spectrum – DRSS
      20. 7.3.20 Gate Driver
      21. 7.3.21 Cable Drop Compensation (CDC)
      22. 7.3.22 CFG-pin and R2D Interface
      23. 7.3.23 Advanced Monitoring Features
        1. 7.3.23.1  Overview
        2. 7.3.23.2  BUSY
        3. 7.3.23.3  OFF
        4. 7.3.23.4  VOUT
        5. 7.3.23.5  IOUT
        6. 7.3.23.6  INPUT
        7. 7.3.23.7  TEMPERATURE
        8. 7.3.23.8  CML
        9. 7.3.23.9  OTHER
        10. 7.3.23.10 ILIM_OP
        11. 7.3.23.11 nFLT/nINT Pin Output
        12. 7.3.23.12 Status Byte
      24. 7.3.24 Protection Features
        1. 7.3.24.1  Thermal Shutdown (TSD)
        2. 7.3.24.2  Over Current Protection
        3. 7.3.24.3  Output Over Voltage Protection 1 (OVP1)
        4. 7.3.24.4  Output Over Voltage Protection 2 (OVP2)
        5. 7.3.24.5  Input Voltage Protection (IVP)
        6. 7.3.24.6  Input Voltage Regulation (IVR)
        7. 7.3.24.7  Power Good
        8. 7.3.24.8  Boot-Strap Under Voltage Protection
        9. 7.3.24.9  Boot-strap Over Voltage Clamp
        10. 7.3.24.10 CRC - CHECK
    4. 7.4 Device Functional Modes
      1. 7.4.1 Overview
      2. 7.4.2 Logic State Description
    5. 7.5 Programming
      1. 7.5.1 I2C Bus Operation
      2. 7.5.2 Clock Stretching
      3. 7.5.3 Data Transfer Formats
      4. 7.5.4 Single READ from a Defined Register Address
      5. 7.5.5 Sequential READ Starting from a Defined Register Address
      6. 7.5.6 Single WRITE to a Defined Register Address
      7. 7.5.7 Sequential WRITE Starting at a Defined Register Address
  9. LM51772 Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Custom Design with WEBENCH Tools
        2. 9.2.2.2  Frequency
        3. 9.2.2.3  Feedback Divider
        4. 9.2.2.4  Inductor and Current Sense Resistor Selection
        5. 9.2.2.5  Output Capacitor
        6. 9.2.2.6  Input Capacitor
        7. 9.2.2.7  Slope Compensation
        8. 9.2.2.8  UVLO Divider
        9. 9.2.2.9  Soft-Start Capacitor
        10. 9.2.2.10 MOSFETs QH1 and QL1
        11. 9.2.2.11 MOSFETs QH2 and QL2
        12. 9.2.2.12 Loop Compensation
        13. 9.2.2.13 External Component Selection
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Power Stage Layout
        2. 9.4.1.2 Gate Driver Layout
        3. 9.4.1.3 Controller Layout
      2. 9.4.2 Layout Example
    5. 9.5 USB-PD Source with Power Path
    6. 9.6 Parallel (Multiphase) Operation
    7. 9.7 Constant Current LED Driver
    8. 9.8 Wireless Charging Supply
    9. 9.9 Bi-Directional Power Backup
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 Trademarks
    5. 10.5 静电放电警告
    6. 10.6 术语表
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Power Supply Recommendations

The LM51772 is designed to operate over a wide input voltage range. The characteristics of the input supply must be compatible with the Absolute Maximum Ratings and Recommended Operating Conditions. In addition, the input supply must be capable of delivering the required input current to the fully loaded regulator. Use Equation 66 to estimate the average input current.

Equation 66. I I =   P O V I   η

where

  • η the efficiency.

If the device is connected to an input supply through long wires or PCB traces with a large impedance, take special care to achieve stable performance. The parasitic inductance and resistance of the input cables can have an adverse effect on converter operation. The parasitic inductance in combination with the low-ESR ceramic input capacitors form an under-damped resonant circuit. This circuit can cause overvoltage transients at VIN each time the input supply is cycled ON and OFF. The parasitic resistance causes the input voltage to dip during a load transient. One way to solve such issues is to reduce the distance from the input supply to the regulator and use an aluminum or tantalum input capacitor in parallel with the ceramics. The moderate ESR of the electrolytic capacitors helps to damp the input resonant circuit and reduce any voltage overshoots. An EMI input filter is often used in front of the controller power stage. Unless carefully designed, it can lead to instability as well as some of the previously mentioned affects.