ZHCSQX2 July   2024 LM5190-Q1

ADVANCE INFORMATION  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 引脚配置和功能
    1. 4.1 可润湿侧翼
  6. 规格
    1. 5.1 绝对最大额定值
    2. 5.2 ESD 等级 
    3. 5.3 建议运行条件
    4. 5.4 热性能信息
    5. 5.5 电气特性
  7. 详细说明
    1. 6.1 概述
    2. 6.2 功能方框图
    3. 6.3 特性说明
      1. 6.3.1  输入电压范围 (VIN)
      2. 6.3.2  高压辅助电源稳压器(VCC、BIAS)
      3. 6.3.3  精密使能端 (EN)
      4. 6.3.4  电源正常监视器 (PGOOD)
      5. 6.3.5  开关频率 (RT)
      6. 6.3.6  低压降模式
      7. 6.3.7  双随机展频 (DRSS)
      8. 6.3.8  软启动
      9. 6.3.9  输出电压设定值 (FB)
      10. 6.3.10 最短可控导通时间
      11. 6.3.11 电感器电流检测(ISNS+、VOUT)
      12. 6.3.12 电压环路误差放大器
      13. 6.3.13 电流监测器、可编程电流限制和电流环路误差放大器(IMON/ILIM,ISET)
      14. 6.3.14 双环路架构
      15. 6.3.15 PWM 比较器
      16. 6.3.16 斜率补偿
      17. 6.3.17 高侧和低侧栅极驱动器(HO、LO)
    4. 6.4 器件功能模式
      1. 6.4.1 睡眠模式
      2. 6.4.2 强制 PWM 模式和同步 (FPWM/SYNC)
      3. 6.4.3 热关断
  8. 应用和实施
    1. 7.1 应用信息
      1. 7.1.1 动力总成元件
        1. 7.1.1.1 降压电感器
        2. 7.1.1.2 输出电容器
        3. 7.1.1.3 输入电容器
        4. 7.1.1.4 功率 MOSFET
        5. 7.1.1.5 EMI 滤波器
      2. 7.1.2 误差放大器和补偿
    2. 7.2 典型应用
      1. 7.2.1 高效 400kHz CC-CV 稳压器
        1. 7.2.1.1 设计要求
        2. 7.2.1.2 详细设计过程
          1. 7.2.1.2.1 使用 Excel 快速启动工具创建定制设计方案
          2. 7.2.1.2.2 推荐组件
        3. 7.2.1.3 应用曲线
    3. 7.3 电源相关建议
    4. 7.4 布局
      1. 7.4.1 布局指南
        1. 7.4.1.1 功率级布局
        2. 7.4.1.2 栅极驱动布局
        3. 7.4.1.3 PWM 控制器布局
        4. 7.4.1.4 热设计和布局
        5. 7.4.1.5 接地平面设计
      2. 7.4.2 布局示例
  9. 器件和文档支持
    1. 8.1 器件支持
      1. 8.1.1 开发支持
    2. 8.2 文档支持
      1. 8.2.1 相关文档
        1. 8.2.1.1 PCB 布局资源
        2. 8.2.1.2 热设计资源
    3. 8.3 接收文档更新通知
    4. 8.4 支持资源
    5. 8.5 商标
    6. 8.6 静电放电警告
    7. 8.7 术语表
  10. 修订历史记录
  11. 10机械、封装和可订购信息
    1. 10.1 卷带包装信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

栅极驱动布局

尽可能地减少杂散或寄生栅极环路电感是优化栅极驱动开关性能的关键,因为无论是与 MOSFET 栅极电容谐振的串联栅极电感,还是共源电感(栅极和功率回路常见),都会提供与栅极驱动命令相反的负反馈补偿,从而导致 MOSFET 开关时间延长。以下环路非常重要:

  • 环路 3:高侧 MOSFET,QH。在高侧 MOSFET 导通期间,大电流从自举电容器流向栅极驱动器和高侧 MOSFET,然后再通过 SW 连接流回到启动电容器的负端子。相反,若要关断高侧 MOSFET,大电流从自举(启动)电容器流向栅极驱动器和高侧 MOSFET,然后再通过 SW 连接流回到启动电容器的负端子。
  • 环路 4:低侧 MOSFET,QL。在低侧 MOSFET 导通期间,大电流从 VCC 去耦电容器流向栅极驱动器和低侧 MOSFET,然后再通过接地端流回电容器的负端子。相反,若要关断低侧 MOSFET,大电流从低侧 MOSFET 的栅极流向栅极驱动器和 GND,然后再通过接地端流回低侧 MOSFET 的源极。

在使用高速 MOSFET 栅极驱动电路进行设计时,TI 建议遵循以下电路布局指南。

  • 从栅极驱动器输出(HO 和 LO)到高侧或低侧 MOSFET 相应栅极的连接必须尽可能短,从而减少串联寄生电感。请注意,峰值栅极驱动电流可高达几安培。使用 0.65mm (25mil) 或更宽的迹线。在必要时,沿着这些迹线使用直径至少 0.5mm (20mil) 的通孔。将 HO 和 SW 迹线作为差分对从器件布放到高侧 MOSFET,从而充分利用磁通抵消。另外,将 LO 迹线和 PGND 迹线/铜面积作为差分对从器件布放到低侧 MOSFET,从而充分利用磁通抵消。
  • 将自举电容器 CCBOOT 靠近器件的 CBOOT 和 SW 引脚放置,从而尽可能地减少与高侧驱动器相关联的环路 3 面积。类似地,将 VCC 电容器 CVCC 靠近器件的 VCC 和 PGND 引脚放置,从而尽可能地减少与低侧驱动器相关联的环路 4 面积。