ZHCSXB0A October   2024  – December 2024 LM61480T-Q1 , LM61495T-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较表
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 时序要求
    7. 6.7 开关特性
    8. 6.8 典型特性
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  输出电压选择
      2. 7.3.2  使能 EN 引脚和 VIN UVLO 用途
      3. 7.3.3  用于同步的 SYNC/MODE
      4. 7.3.4  时钟锁定
      5. 7.3.5  可调开关频率
      6. 7.3.6  RESET 输出运行
      7. 7.3.7  内部 LDO、VCC UVLO 和 BIAS 输入
      8. 7.3.8  自举电压和 VCBOOT-UVLO(CBOOT 引脚)
      9. 7.3.9  SW 节点压摆率可调
      10. 7.3.10 展频
      11. 7.3.11 软启动和从压降中恢复
      12. 7.3.12 过流和短路保护
      13. 7.3.13 断续
      14. 7.3.14 热关断
    4. 7.4 器件功能模式
      1. 7.4.1 关断模式
      2. 7.4.2 待机模式
      3. 7.4.3 工作模式
        1. 7.4.3.1 峰值电流模式运行
        2. 7.4.3.2 自动模式运行
          1. 7.4.3.2.1 二极管仿真
        3. 7.4.3.3 FPWM 模式运行
        4. 7.4.3.4 最短导通时间(高输入电压)运行
        5. 7.4.3.5 压降
        6. 7.4.3.6 从压降中恢复
        7. 7.4.3.7 其他故障模式
  9. 应用和实施
    1. 8.1 应用信息
    2. 8.2 典型应用
      1. 8.2.1 设计要求
      2. 8.2.2 详细设计过程
        1. 8.2.2.1  选择开关频率
        2. 8.2.2.2  设置输出电压
        3. 8.2.2.3  电感器选型
        4. 8.2.2.4  输出电容器选型
        5. 8.2.2.5  输入电容器选型
        6. 8.2.2.6  BOOT 电容器
        7. 8.2.2.7  启动电阻器
        8. 8.2.2.8  VCC
        9. 8.2.2.9  CFF 和 RFF 选择
        10. 8.2.2.10 RSPSP 选择
        11. 8.2.2.11 RT 选择
        12. 8.2.2.12 RMODE 选择
        13. 8.2.2.13 外部 UVLO
        14. 8.2.2.14 最高环境温度
      3. 8.2.3 应用曲线
    3. 8.3 电源相关建议
    4. 8.4 布局
      1. 8.4.1 布局指南
        1. 8.4.1.1 接地及散热注意事项
      2. 8.4.2 布局示例
  10. 器件和文档支持
    1. 9.1 器件支持
      1. 9.1.1 第三方米6体育平台手机版_好二三四免责声明
    2. 9.2 文档支持
      1. 9.2.1 相关文档
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 商标
    6. 9.6 术语表
    7. 9.7 静电放电警告
  11. 10修订历史记录
  12. 11机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

最高环境温度

与任何功率转换器件一样,LM614xxT-Q1 在运行时会消耗内部功率。这种功率耗散的影响是将转换器的内部温度升高到环境温度以上。内部芯片温度 (TJ) 是以下各项的函数:

  • 环境温度
  • 功率损耗
  • 器件的有效热阻 (RθJA)
  • PCB 布局
LM614xxT-Q1 的最高内核温度必须限制为 150°C。这会限制器件的最大功率耗散,从而限制负载电流。方程式 8 展示了重要参数之间的关系。较大的环境温度 (TA) 和较大的 RθJA 值会降低最大可用输出电流。可以使用应用曲线 部分提供的曲线来估算转换器效率。如果在其中某条曲线中找不到所需的运行条件,则可以使用内插来估算效率。或者,可以调整 EVM 以匹配所需的应用要求,并且可以直接测量效率。RθJA 的正确值更难估计。如半导体和 IC 封装热指标 应用手册中所述,节 6.4 中给出的 RθJA 值并非对于设计用途始终有效,不得用于估计器件在实际应用中的热性能。节 6.4表中报告的值是在实际应用中很少获得的一组特定条件下测量的。

方程式 8. IOUTMAX=(TJ-TA)RθJA×η1-η×1VOUT

其中

  • η = 效率
  • TA = 环境温度(单位为 °C)
  • TJ = 结温(单位为 °C)
  • RθJA = IC 结至空气的有效热阻(主要通过 PCB,单位为 °C/W)

有效 RθJA 是一个关键参数,取决于多种因素,以下仅列举几项最重要的参数:

  • 功率耗散
  • 空气温度
  • 气流
  • PCB 面积
  • 铜面积
  • 散热器尺寸
  • 封装之下或封装附近的散热过孔数量
  • 相邻元件放置
由于 VQFN (VAM) 封装的尺寸非常小,因此并未提供裸片连接焊盘,这需要将大部分热量从引脚流向电路板。这意味着当布局不允许热量从引脚流出时,该封装会表现出较大的 RθJA 值。图 8-2 展示了最大输出电流与环境温度间的典型关系曲线,有助于实现良好的热布局。这些数据取自结合了器件和 PCB 的 LM61495TVAMEVM 评估板,给出的 RθJA 约为 21°C/W。请记住,这些图表中给出的数据仅用于说明目的,任何给定应用的实际性能取决于前面提到的所有因素。

LM61480T-Q1 LM61495T-Q1 最大输出电流与环境温度间的关系(没有散热器)

VIN = 13.5V VOUT = 5V
fSW = 2.2MHz RθJA = 21°C/W

图 8-2 最大输出电流与环境温度间的关系(没有散热器)

以下资源可用作出色热 PCB 设计和针对给定应用环境估算 RθJA 的指南: