ZHCSM29A September   2023  – June 2024 LM70840-Q1 , LM70860-Q1 , LM70880-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 说明(续)
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range (VIN)
      2. 7.3.2  High-Voltage Bias Supply Regulator (VCC, BIAS, VDDA)
      3. 7.3.3  Enable (EN)
      4. 7.3.4  Power-Good Monitor (PG)
      5. 7.3.5  Switching Frequency (RT)
      6. 7.3.6  Dual Random Spread Spectrum (DRSS)
      7. 7.3.7  Soft Start
      8. 7.3.8  Output Voltage Setpoint (FB)
      9. 7.3.9  Minimum Controllable On-Time
      10. 7.3.10 Error Amplifier and PWM Comparator (FB, EXTCOMP)
      11. 7.3.11 Slope Compensation
      12. 7.3.12 Shunt Current Sensing
      13. 7.3.13 Hiccup Mode Current Limiting
      14. 7.3.14 Device Configuration (CONFIG)
      15. 7.3.15 Single-Output Dual-phase Operation
      16. 7.3.16 Pulse Frequency Modulation (PFM) / Synchronization
      17. 7.3.17 Thermal Shutdown (TSD)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
      4. 7.4.4 Sleep Mode
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Power Train Components
        1. 8.1.1.1 Buck Inductor
        2. 8.1.1.2 Output Capacitors
        3. 8.1.1.3 Input Capacitors
        4. 8.1.1.4 EMI Filter
      2. 8.1.2 Error Amplifier and Compensation
      3. 8.1.3 Maximum Ambient Temperature
        1. 8.1.3.1 Derating Curves
    2. 8.2 Typical Applications
      1. 8.2.1 Design 1 – High Efficiency, Wide Input, 400-kHz Synchronous Buck Regulator
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2 Custom Design With Excel Quickstart Tool
          3. 8.2.1.2.3 Buck Inductor
          4. 8.2.1.2.4 Current-Sense Resistance
          5. 8.2.1.2.5 Output Capacitors
          6. 8.2.1.2.6 Input Capacitors
          7. 8.2.1.2.7 Frequency Set Resistor
          8. 8.2.1.2.8 Feedback Resistors
          9. 8.2.1.2.9 Compensation Components
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Design 2 – High Efficiency 48V to 12V 400kHz Synchronous Buck Regulator
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Thermal Design and Layout
      3. 8.4.3 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
        1. 9.2.1.1 PCB Layout Resources
        2. 9.2.1.2 Thermal Design Resources
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 Trademarks
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • RRX|29
散热焊盘机械数据 (封装 | 引脚)

Maximum Ambient Temperature

As with any power conversion device, the LM708x0-Q1 dissipates internal power while operating. The effect of this power dissipation is to raise the internal temperature of the converter above ambient temperature. The internal die temperature (TJ) is a function of the following:

  • Ambient temperature
  • Power loss
  • Effective thermal resistance, RθJA, of the device
  • PCB layout

The maximum internal die temperature for the LM708x0-Q1 must be limited to 150°C. This limit establishes a limit on the maximum device power dissipation and, therefore, the load current. Equation 30 shows the relationships between the important parameters. Larger ambient temperatures (TA) and larger values of RθJA reduce the maximum available output current. The converter efficiency can be estimated by using the LM708x0-Q1 Quickstart Calculator tool. Alternatively, the EVM can be adjusted to match the desired application requirements and the efficiency can be measured directly.

Equation 30. I O U T M A X = ( T J - T A ) R θ J A × η ( 1 - η ) × 1 V O U T

where

  • η = efficiency
  • TA = ambient temperature
  • TJ = junction temperature
  • RθJA = the effective thermal resistance of the IC junction to the air, mainly through the PCB

The correct value of RθJA is more difficult to estimate. As stated in the Semiconductor and IC Package Thermal Metrics Application Report, the JESD 51-7 value of RθJA given in Thermal Information is not valid for design purposes and must not be used to estimate the thermal performance of the device in a real application. The JESD 51-7 values reported in Thermal Information were measured under a specific set of conditions that are rarely obtained in an actual application.

The effective RθJA is a critical parameter and depends on many factors. The following are the most critical parameters:

  • Power dissipation
  • Air temperature
  • Airflow
  • PCB area
  • Copper heat-sink area
  • Number of thermal vias under or near the package
  • Adjacent component placement

Typical curves of maximum output current versus ambient temperature are shown in Derating Curves for a good thermal layout.

Use Thermal Design Resources as a guide for thermal PCB design and estimating RθJA for a given application environment.