ZHCSLA3A May   2020  – December 2020 LM7481-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Charge Pump
      2. 8.3.2 Dual Gate Control (DGATE, HGATE)
        1. 8.3.2.1 Reverse Battery Protection (A, C, DGATE)
        2. 8.3.2.2 Load Disconnect Switch Control (HGATE, OUT)
      3. 8.3.3 Over Voltage Protection and Battery Voltage sensing (VSNS, SW, OV)
      4. 8.3.4 Low Iq Shutdown and Under Voltage Lockout (EN/UVLO)
    4. 8.4 Device Functional Modes
    5. 8.5 Application Examples
      1. 8.5.1 Redundant Supply OR-ing with Inrush Current Limiting, Over Voltage Protection and ON/OFF Control
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical 12-V Reverse Battery Protection Application
      1. 9.2.1  Design Requirements for 12-V Battery Protection
      2. 9.2.2  Automotive Reverse Battery Protection
      3. 9.2.3  Input Transient Protection: ISO 7637-2 Pulse 1
      4. 9.2.4  AC Super Imposed Input Rectification: ISO 16750-2 and LV124 E-06
      5. 9.2.5  Input Micro-Short Protection: LV124 E-10
      6. 9.2.6  Detailed Design Procedure
        1. 9.2.6.1 Design Considerations
        2. 9.2.6.2 Charge Pump Capacitance VCAP
        3. 9.2.6.3 Input and Output Capacitance
        4. 9.2.6.4 Hold-up Capacitance
        5. 9.2.6.5 Over Voltage Protection and Battery Monitor
      7. 9.2.7  MOSFET Selection: Blocking MOSFET Q1
      8. 9.2.8  MOSFET Selection: Hot-Swap MOSFET Q2
      9. 9.2.9  TVS selection
      10. 9.2.10 Application Curves
    3. 9.3 Do's and Don'ts
  10. 10Power Supply Recommendations
    1. 10.1 Transient Protection
    2. 10.2 TVS Selection for 12-V Battery Systems
    3. 10.3 TVS Selection for 24-V Battery Systems
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Support Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Overview

The LM74810-Q1 ideal diode controller drives and controls external back to back N-Channel MOSFETs to emulate an ideal diode rectifier with power path ON/OFF control, inrush current limiting and over voltage protection. The wide input supply of 3 V to 65 V allows protection and control of 12-V and 24-V automotive battery powered ECUs. The device can withstand and protect the loads from negative supply voltages down to –65 V. An integrated ideal diode controller (DGATE) drives the first MOSFET to replace a Schottky diode for reverse input protection and output voltage holdup. A strong charge pump with 60-mA peak GATE source current driver stage and short turn ON and turn OFF delay times ensures fast transient response ensuring robust performance during automotive testing such as ISO16750 or LV124 where an ECU is subjected to AC superimpose input signals upto 200-KHz frequency. With a second MOSFET in the power path the device allows load disconnect (ON/OFF control) and over voltage protection using HGATE control. The device features an adjustable over voltage cut-off protection feature using a programming resistor across SW and OVP terminal.

The LM74810-Q1 controls the DGATE of the MOSFET to regulate the forward voltage drop at 9.1 mV. The linear regulation scheme in these devices enables graceful control of the GATE voltage and turns off of the MOSFET during a reverse current event and ensures zero DC reverse current flow.

The device features enable control. With the enable pin low during the standby mode, both the external MOSFETs and controller is off and draws a very low 2.87 μA of current. The high voltage rating of LM74810-Q1 helps to simplify the system designs for automotive ISO7637 protection. The LM74810-Q1 are also suitable for ORing applications