SNIS146B March   2007  – October 2017 LM95214

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: Temperature-to-Digital Converter
    6. 6.6 Logic Electrical Characteristics: Digital DC Characteristics
    7. 6.7 Switching Characteristics: SMBus Digital
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Conversion Sequence
      2. 7.3.2 Power-On-Default States
      3. 7.3.3 SMBus Interface
      4. 7.3.4 Temperature Conversion Sequence
        1. 7.3.4.1 Digital Filter
      5. 7.3.5 Fault Queue
      6. 7.3.6 Temperature Data Format
      7. 7.3.7 SMBDAT Open-Drain Output
      8. 7.3.8 TCRIT1, TCRIT2, and TCRIT3 Outputs
      9. 7.3.9 TCRIT Limits and TCRIT Outputs
    4. 7.4 Device Functional Modes
      1. 7.4.1 Diode Fault Detection
      2. 7.4.2 Communicating With the LM95214
      3. 7.4.3 Serial Interface Reset
      4. 7.4.4 One-Shot Conversion
    5. 7.5 Register Maps
      1. 7.5.1 LM95214 Registers
        1. 7.5.1.1 Value Registers
          1. 7.5.1.1.1 Local Value Registers
          2. 7.5.1.1.2 Remote Temperature Value Registers With Signed Format
          3. 7.5.1.1.3 Remote Temperature Value Registers With Unsigned Format
        2. 7.5.1.2 Diode Configuration Register
          1. 7.5.1.2.1 Remote 1-4 Offset
        3. 7.5.1.3 Configuration Registers
          1. 7.5.1.3.1 Main Configuration Register
          2. 7.5.1.3.2 Conversion Rate Register
          3. 7.5.1.3.3 Channel Conversion Enable
          4. 7.5.1.3.4 Filter Setting
          5. 7.5.1.3.5 1-Shot
        4. 7.5.1.4 Status Registers
          1. 7.5.1.4.1 Common Status Register
          2. 7.5.1.4.2 Status 1 Register (Diode Fault)
          3. 7.5.1.4.3 Status 2 (TCRIT1)
          4. 7.5.1.4.4 Status 3 (TCRIT2)
          5. 7.5.1.4.5 Status 4 (TCRIT3)
        5. 7.5.1.5 Mask Registers
          1. 7.5.1.5.1 TCRIT1 Mask Register
          2. 7.5.1.5.2 TCRIT2 Mask Registers
          3. 7.5.1.5.3 TCRIT3 Mask Register
        6. 7.5.1.6 Limit Registers
          1. 7.5.1.6.1 Local Limit Register
          2. 7.5.1.6.2 Remote Limit Registers
          3. 7.5.1.6.3 Common Tcrit Hysteresis Register
        7. 7.5.1.7 Identification Registers
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
    3. 8.3 Diode Non-Ideality
      1. 8.3.1 Diode Non-Ideality Factor Effect on Accuracy
      2. 8.3.2 Calculating Total System Accuracy
      3. 8.3.3 Compensating for Different Non-Ideality
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(3)(4)
MIN MAX UNIT
Supply voltage –0.3 6 V
Voltage at SMBDAT, SMBCLK,
TCRIT1, TCRIT2, TCRIT3
–0.5 6 V
Voltage at other pins –0.3 VDD + 0.3 V
D− Input current ±1 mA
Input current at all other pins (2) ±5 mA
Package input current (2) 30 mA
SMBDAT, TCRIT1, TCRIT2,
TCRIT3 output sink current
10 mA
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
When the input voltage (VI) at any pin exceeds the power supplies (VI < GND or VI > VDD), the current at that pin must be limited to 5 mA. Parasitic components and or ESD protection circuitry are shown in the table below for the LM95214's pins.
Soldering process must comply with reflow temperature profile specifications. Refer to http://www.ti.com/packaging
Reflow temperature profiles are different for packages containing lead (Pb) than for those that do not.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge(3) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine Model ±200
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
Human-body model, 100-pF discharged through a 1.5-kΩ resistor. Machine model, 200-pF discharged directly into each pin. Charged-device model (CDM) simulates a pin slowly acquiring charge (such as from a device sliding down the feeder in an automated assembler) then rapidly being discharged.

Recommended Operating Conditions

MIN NOM MAX UNIT
Operating temperature –40 140 °C
Supply voltage (VDD) 3 3.6 V

Thermal Information

THERMAL METRIC(1) LM95214 UNIT
NHL (WSON)
14 PINS
RθJA Junction-to-ambient thermal resistance 38.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 27.5 °C/W
RθJB Junction-to-board thermal resistance 16.7 °C/W
ψJT Junction-to-top characterization parameter 0.3 °C/W
ψJB Junction-to-board characterization parameter 16.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.2 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics: Temperature-to-Digital Converter

minimum and maximum specifications are over –40°C to +125°C and V+ = +3 V to 3.6 V (unless otherwise noted); typical specifications are at TA = TJ = 25°C and V+ = 3.3 V
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Temperature error using local diode TA = –40°C to +125°C, (1) –2 ±1 +2 °C
Temperature error using an MMBT3904 transistor remote diode(2) TA = +25°C to +85°C
TD = +60°C to +100°C
–1.1 +1.1 °C
TA = +25°C to +85°C
TD = –40°C to +125°C
–1.3 +1.3 °C
TA = –40°C to +85°C
TD = –40°C to +125°C
–3 +3 °C
TA = –40°C to +85°C
TD = 125°C to +140°C
–3.3 +3.3 °C
Local diode measurement resolution 11 Bits
0.125 °C
Remote diode measurement resolution Digital filter off 11 Bits
0.125 °C
Digital filter on (Remote Diodes 1 and 2 only) 13 Bits
0.03125 °C
Conversion time of all temperatures at the fastest setting(4) All channels are enabled in default state 1100 1210 ms
1 external channel 31 34 ms
Local only 30 33 ms
Quiescent current (3) SMBus inactive, 1-Hz conversion rate, channels in default state 570 800 µA
Shutdown 360 µA
D− Source voltage 0.4 V
Remote diode source current High level 160 230 µA
Low level 10
Power-On reset threshold Measured on VDD input, falling edge 1.6 2.8 V
TCRIT1 pin temperature threshold Default diodes 1 and 2 only 110 °C
TCRIT2 pin temperature threshold Default all channels 85 °C
TCRIT3 pin temperature threshold Default diodes 3 and 4 only 85 °C
Local temperature accuracy does not include the effects of self-heating. The rise in temperature due to self-heating is the product of the internal power dissipation of the LM95214 and the thermal resistance. See under Recommended Operating Conditions table for the thermal resistance to be used in the self-heating calculation.
The accuracy of the LM95214CISD is ensured when using a typical MMBT3904 diode-connected transistor. For further information on other thermal diodes see applications Diode Non-Ideality.
Quiescent current will not increase substantially with an SMBus communication.
This specification is provided only to indicate how often temperature data is updated. The LM95214 can be read at any time without regard to conversion state (and will yield last conversion result).

Logic Electrical Characteristics: Digital DC Characteristics

Unless otherwise noted all limits are specified for VDD = +3 Vdc to 3.6 Vdc, TA= TJ = +25°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SMBDAT, SMBCLK INPUTS
VIN(1) Logical 1 input voltage 2.1 V
VIN(0) Logical 0 input voltage 0.8 V
VIN(HYST) SMBDAT and SMBCLK digital input hysteresis 400 mV
IIN(1) Logical 1 input current VIN = VDD 0.005 10 µA
IIN(0) Logical 0 input current VIN = 0 V −0.005 –10 µA
CIN Input capacitance 5 pF
A0 DIGITAL INPUT
VIH Input high voltage 0.90 × VDD V
VIM Input middle voltage 0.43 × VDD 0.57 × VDD V
V
VIL Input low voltage 0.10 × VDD V
IIN(1) Logical 1 input current VIN = VDD VIN = VDD –0.005 –10 µA
IIN(0) Logical 0 input current VIN = 0 V VIN = 0 V 0.005 10 µA
CIN Input capacitance 5 pF
SMBDAT, TCRIT1, TCRIT2, TCRIT3 DIGITAL OUTPUTS
IOH High level output current VOH = VDD 10 µA
VOL(SMBDAT) SMBus low level output voltage IOL = 4 mA 0.4 V
IOL = 6 mA 0.6 V
VOL(TCRIT) TCRIT1, TCRIT2, TCRIT3 low level output voltage IOL = 6 mA 0.4 V
COUT Digital output capacitance 5 pF

Switching Characteristics: SMBus Digital


Unless otherwise noted, these specifications apply for VDD=+3.0 Vdc to +3.6 Vdc, CL (load capacitance) on output lines = 80 pF, TA = TJ = +25°C.
The switching characteristics of the LM95214 fully meet or exceed the published specifications of the SMBus version 2.0. The following parameters are the timing relationships between SMBCLK and SMBDAT signals related to the LM95214. They adhere to but are not necessarily the SMBus bus specifications.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fSMB SMBus clock frequency 10 100 kHz
tLOW SMBus clock low time from VIN(0)max to VIN(0)max 4.7 µs
25 ms
tHIGH SMBus clock high time from VIN(1)min to VIN(1)min 4.0 µs
tR,SMB SMBus rise time See (1) 1 µs
tF,SMB SMBus fall time See (2) 0.3 µs
tOF Output fall time CL = 400 pF,
IO = 3 mA(2)
250 ns
tTIMEOUT SMBDAT and SMBCLK time low for reset of serial interface 25 35 ms
tSU;DAT Data in setup time to SMBCLK high 250 ns
tHD;DAT Data out stable after SMBCLK low 300 1075 ns
tHD;STA Start condition SMBDAT low to SMBCLK low (Start condition hold before the first clock falling edge) 100 ns
tSU;STO Stop condition SMBCLK high to SMBDAT low (Stop condition setup) 100 ns
tSU;STA SMBus repeated start-condition setup time, SMBCLK high to SMBDAT low 0.6 µs
tBUF SMBus free time between stop and start conditions 1.3 µs
The output rise time is measured from (VIN(0)max − 0.15 V) to (VIN(1)min + 0.15 V).
The output fall time is measured from (VIN(1)min + 0.15 V) to (VIN(0)max − 0.15 V).
LM95214 30006109.gif Figure 1. SMBus Communication

Typical Characteristics

LM95214 30006106.gif Figure 2. Conversion Rate Effect on Average Power Supply Current
LM95214 30006107.png Figure 4. Remote Temperature Reading Sensitivity to Thermal Diode Filter Capacitance
LM95214 D003_SNIS146_RT1TempErr.gif Figure 6. Remote 1 Temperature Error, TA = TD
LM95214 D004_SNIS146_RT3TempErr.gif Figure 8. Remote 3 Temperature Error, TA = TD
LM95214 30006123.png Figure 3. Thermal Diode Capacitor or PCB Leakage Current Effect on Remote Diode Temperature Reading
LM95214 D002_SNIS146_LocTempErr.gif Figure 5. Local Temperature Error, TA = TD
LM95214 D001_SNIS146_RT2TempErr.gif Figure 7. Remote 2 Temperature Error, TA = TD
LM95214 D005_SNIS146_RT4TempErr.gif Figure 9. Remote 4 Temperature Error, TA = TD