ZHCSUW0D March   1998  – February 2024 LMC660 , LMC662

PRODUCTION DATA  

  1.   1
  2. 1特性
  3. 2应用
  4. 3说明
  5. 4Pin Configuration and Functions
  6. 5Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information LMC662
    5. 5.5 Thermal Information LMC660
    6. 5.6 Electrical Characteristics
    7. 5.7 Typical Characteristics
  7. 6Application and Implementation
    1. 6.1 Application Information
      1. 6.1.1 Amplifier Topology
      2. 6.1.2 Compensating Input Capacitance
      3. 6.1.3 Capacitive Load Tolerance
      4. 6.1.4 Bias Current Testing
    2. 6.2 Typical Applications
    3. 6.3 Layout
      1. 6.3.1 Layout Guidelines
        1. 6.3.1.1 Printed Circuit Board Layout for High-Impedance Work
  8. 7Device and Documentation Support
    1. 7.1 接收文档更新通知
    2. 7.2 支持资源
    3.     Trademarks
    4. 7.3 静电放电警告
    5. 7.4 术语表
  9. 8Revision History
  10. 9Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Amplifier Topology

The topology chosen for the LMC66x, shown in Figure 6-1, is unconventional compared to general-purpose op amps. The LMC66x incorporates novel op amp design that enables a wide input common-mode range and rail to rail output swing even when driving a large load. The input common-mode range includes ground, making the LMC66x an excellent choice for single supply applications. While the LMC66x supports both a wide supply and common-mode voltage range, large input common-mode voltage can cause an increase in input bias current.

GUID-20240203-SS0I-0KP6-6J78-KQFPWVHVSLKZ-low.svg Figure 6-1 LMC66x Circuit Topology (Each Amplifier)

The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, even with a 600Ω load. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, under heavy load (600Ω) the gain is reduced as indicated in the Electrical Characteristics.