SNOS753F August   1999  – January 2025 LMC7111

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics for VS = 2.7V or ±1.35V
    6. 5.6  Electrical Characteristics for VS = 5V or ±2.5V
    7. 5.7  Electrical Characteristics for VS = 10V or ±5V
    8. 5.8  Typical Characteristics
    9. 5.9  Typical Characteristics: 2.7V
    10. 5.10 Typical Characteristics: 3V
    11. 5.11 Typical Characteristics: 5V
    12. 5.12 Typical Characteristics: 10V
  7. Detailed Description
    1. 6.1 Feature Description
      1. 6.1.1 Benefits of the LMC7111 Tiny Amp
        1. 6.1.1.1 Size
        2. 6.1.1.2 Height
        3. 6.1.1.3 Signal Integrity
        4. 6.1.1.4 Simplified Board Layout
        5. 6.1.1.5 Low Supply Current
        6. 6.1.1.6 Wide Voltage Range
      2. 6.1.2 Input Common-Mode Voltage Range
      3. 6.1.3 Output Swing
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Capacitive Load Tolerance
      2. 7.1.2 Compensating for Input Capacitance When Using Large-Value Feedback Resistors
      3. 7.1.3 Dual and Quad Devices With Similar Performance
    2. 7.2 Typical Application
      1. 7.2.1 Biasing GaAs RF Amplifiers
      2. 7.2.2 Reference Buffer for Analog-to-Digital Converters
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Spice Macromodel
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • DBV|5
散热焊盘机械数据 (封装 | 引脚)
订购信息

Compensating for Input Capacitance When Using Large-Value Feedback Resistors

When using very large value feedback resistors, (usually > 500kΩ) the large feed back resistance can react with the input capacitance due to transducers, photodiodes, and circuit board parasitics to reduce phase margins.

The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in Figure 7-2), Cf is first estimated by:

Equation 1. LMC7111

or

Equation 2. R1 CIN ≤ R2 Cf

which typically provides significant overcompensation.

Printed circuit board stray capacitance can be larger or smaller than that of a breadboard, so the actual optimum value for CFcan be different. Check CF values on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.)

LMC7111 Canceling the Effect of Input
                    Capacitance Figure 7-2 Canceling the Effect of Input Capacitance