SNOS753F August   1999  – January 2025 LMC7111

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics for VS = 2.7V or ±1.35V
    6. 5.6  Electrical Characteristics for VS = 5V or ±2.5V
    7. 5.7  Electrical Characteristics for VS = 10V or ±5V
    8. 5.8  Typical Characteristics
    9. 5.9  Typical Characteristics: 2.7V
    10. 5.10 Typical Characteristics: 3V
    11. 5.11 Typical Characteristics: 5V
    12. 5.12 Typical Characteristics: 10V
  7. Detailed Description
    1. 6.1 Feature Description
      1. 6.1.1 Benefits of the LMC7111 Tiny Amp
        1. 6.1.1.1 Size
        2. 6.1.1.2 Height
        3. 6.1.1.3 Signal Integrity
        4. 6.1.1.4 Simplified Board Layout
        5. 6.1.1.5 Low Supply Current
        6. 6.1.1.6 Wide Voltage Range
      2. 6.1.2 Input Common-Mode Voltage Range
      3. 6.1.3 Output Swing
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Capacitive Load Tolerance
      2. 7.1.2 Compensating for Input Capacitance When Using Large-Value Feedback Resistors
      3. 7.1.3 Dual and Quad Devices With Similar Performance
    2. 7.2 Typical Application
      1. 7.2.1 Biasing GaAs RF Amplifiers
      2. 7.2.2 Reference Buffer for Analog-to-Digital Converters
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Spice Macromodel
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • DBV|5
散热焊盘机械数据 (封装 | 引脚)
订购信息

Electrical Characteristics for VS = 10V or ±5V

at TA = +25°C, V+ = 10V, V- = 0V, VCM = VO = V+ / 2, and RL > 1MΩ (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OFFSET VOLTAGE
VOS Input offset voltage ±0.9 ±7 mV
TJ = –40°C to +85°C ±9
dVOS/dT Input offset voltage drift TJ = –40°C to +85°C 2 µV/°C
PSRR Power supply rejection ratio Positive
5V < V< 10V, V– = 0V, VO = 2.5V
80 dB
Negative
–5V < V< –10V, V+ = 0V, VO = 2.5V
80
INPUT BIAS CURRENT
IB Input bias current (1) ±0.1 ±1 pA
TJ = –40°C to +85°C ±20
IOS Input offset current (1) ±0.01 ±0.5 pA
TJ = –40°C to +85°C ±10
NOISE
en Input voltage noise density f = 1kHz, VCM = 1V 110 nV/√Hz
in Input current noise density f = 1kHz 0.03 pA/√Hz
INPUT VOLTAGE
VCM Common-mode voltage range To positive rail
CMRR ≥ 50dB
10.15 10.2 V
TJ = –40°C to +85°C 10.0
To negative rail
CMRR ≥ 50dB
–0.2 –0.15
TJ = –40°C to +85°C 0.0
INPUT IMPEDANCE
RIN Input resistance >10 TΩ
CIN Common mode input capacitance 3 pF
OPEN-LOOP GAIN
AOL Open-loop voltage gain RL = 100kΩ Sourcing 500 V/mV
Sinking 200
FREQUENCY RESPONSE
GBW Gain bandwidth product 50 kHz
SR Slew rate Voltage follower with 1V step input, RL = 100kΩ to 5V, f = 1kHz, VO = 2VPP 0.03 V/µs
GM Gain margin 15 dB
θm Phase margin 50 °
OUTPUT
VO Voltage output swing RL = 100kΩ Positive rail, 9.98 9.99 V
Negative rail 0.01 0.02
RL = 10kΩ Positive rail 9.90 9.98
Negative rail 0.02 0.1
ISC Short-circuit current Sourcing
V= 0V
25 20 mA
TJ = –40°C to +85°C 7
Sinking
V= 10V
30 20
TJ = –40°C to +85°C 7
POWER SUPPLY
IQ Quiescent current per amplifier  25 60 µA
TJ = –40°C to +85°C 75
Input bias current specified by design and processing.