ZHCSFT3D March   2015  – March 2017 LMG5200

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Propagation Delay and Mismatch Measurement
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Control Inputs
      2. 8.3.2 Start-up and UVLO
      3. 8.3.3 Bootstrap Supply Voltage Clamping
      4. 8.3.4 Level Shift
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 VCC Bypass Capacitor
        2. 9.2.2.2 Bootstrap Capacitor
        3. 9.2.2.3 Power Dissipation
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Examples
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 开发支持
    2. 12.2 文档支持
      1. 12.2.1 相关文档
    3. 12.3 接收文档更新通知
    4. 12.4 社区资源
    5. 12.5 商标
    6. 12.6 静电放电警告
    7. 12.7 Glossary
  13. 13机械、封装和可订购信息
    1. 13.1 封装信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
PARAMETER MIN MAX UNIT
VIN to PGND 0 80 V
VIN to PGND (pulsed, 100-ms maximum duration)(2) 100 V
HB to AGND –0.3 86 V
HS to AGND –5 80 V
HI to AGND –0.3 12 V
LI to AGND –0.3 12 V
VCC to AGND –0.3 6 V
HB to HS –0.3 6 V
HB to VCC 0 80 V
SW to PGND –5 80 V
IOUT from SW pin 10 A
Junction temperature, TJ –40 125 °C
Storage temperature, Tstg –40 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Device can withstand 1000 pulses up to 100 V of 100-ms duration and less than 1% duty cycle over its lifetime.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 V
Charged-device model (CDM), per JEDEC specification
JESD22-C101(2)
±500 V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VCC 4.75 5 5.25 V
LI or HI Input 0 12 V
VIN 0 80 V
HS, SW –5 80 V
HB VHS + 4 VHS + 5.25 V
HS, SW slew rate(1) 50 V/ns
Junction temperature, TJ –40 125 °C
This parameter is ensured by design. Not tested in production.

Thermal Information

THERMAL METRIC (1) (2) LMG5200 UNIT
MOF (QFM)
9 PINS
R θJA Junction-to-ambient thermal resistance 35 °C/W
R θJC(top) Junction-to-case (top) thermal resistance 18 °C/W
R θJB Junction-to-board thermal resistance 16 °C/W
ψ JT Junction-to-top characterization parameter 1.8 °C/W
ψ JB Junction-to-board characterization parameter 16 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator .

Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENTS
ICC VCC quiescent current LI = HI = 0 V, VCC = 5 V, HB-HS = 4.6 V 0.08 0.125 mA
ICCO Total VCC operating current f = 500 kHz 3 5 mA
IHB HB quiescent current LI = HI = 0 V, VCC = 5 V, HB-HS = 4.6 V 0.09 0.15 mA
IHBO HB operating current f = 500 kHz, 50% Duty cycle, VDD = 5 V 1.5 2.5 mA
INPUT PINS
VIH High-level input voltage threshold Rising edge 1.87 2.06 2.22 V
VIL Low-level input voltage threshold Falling edge 1.48 1.66 1.76 V
VHYS Hysteresis between rising and falling threshold 400 mV
RI Input pulldown resistance 100 200 300
UNDERVOLTAGE PROTECTION
VCCR VCC Rising edge threshold Rising 3.2 3.8 4.5 V
VCC(hyst) VCC UVLO threshold hysteresis 200 mV
VHBR HB Rising edge threshold Rising 2.5 3.2 3.9 V
VHB(hyst) HB UVLO threshold hysteresis 200 mV
BOOTSTRAP DIODE
VDL Low-current forward voltage IVDD-HB = 100 µA 0.45 0.65 V
VDH High current forward voltage IVDD-HB = 100 mA 0.9 1.0 V
RD Dynamic resistance IVDD-HB = 100 mA 1.85 2.8 Ω
HB-HS clamp Regulation Voltage 4.65 5 5.2 V
tBS Bootstrap diode reverse recovery time IF = 100 mA, IR = 100 mA 40 ns
QRR Bootstrap diode reverse recovery charge VVIN = 50 V 2 nC
POWER STAGE
RDS(ON)HS High-side GaN FET on-resistance LI = 0 V, HI = VCC=5 V, HB-HS = 5 V, VIN-SW = 10 A, TJ = 25℃ 15 20
RDS(ON)LS Low-side GaN FET on-resistance LI = VCC = 5V, HI = 0 V, HB-HS = 5 V, SW-PGND = 10 A, TJ = 25℃ 15 20
VSD GaN 3rd quadrant conduction drop ISD = 500 mA, VIN floating, VVCC = 5 V, HI = LI = 0 V 2 V
IL-VIN-SW Leakage from VIN to SW when the high-side GaN FET and low-side GaN FET are off VIN = 80 V, HI = LI = 0 V, VVCC = 5 V, TJ= 25℃ 25 150 µA
IL-SW-GND Leakage from SW to GND when the high-side GaN FET and low-side GaN FET are off SW = 80 V, HI = LI = 0 V, VVCC = 5V, TJ = 25℃ 25 150 µA
COSS Output capacitance of high-side GaN FET and low-side GaN FET VDS=40 V, VGS= 0V (HI = LI = 0 V) 266 pF
QG Total gate charge VDS=40 V, ID= 10A, VGS= 5 V 3.8 nC
QOSS Output charge VDS=40 V, ID= 10 A 21 nC
QRR Source-to-drain reverse recovery charge Not including internal driver bootstrap diode 0 nC
tHIPLH Propagation delay: HI rising(2) LI = 0 V, VCC = 5 V, HB-HS = 5 V, VIN = 30 V 29.5 50 ns
tHIPHL Propagation delay: HI falling(2) LI = 0 V, VCC = 5 V, HB-HS = 5 V, VIN = 30 V 29.5 50 ns
tLPLH Propagation delay: LI rising(2) HI = 0 V, VCC = 5 V, HB-HS = 5 V, VIN = 30 V 29.5 50 ns
tLPHL Propagation delay: LI falling(2) HI = 0 V, VCC = 5 V, HB-HS = 5 V, VIN = 30 V 29.5 50 ns
tMON Delay matching: LI high and HI low(2) 2 8 ns
tMOFF Delay matching: LI low and HI high(2) 2 8 ns
tPW Minimum input pulse width that changes the output 10 ns
Parameters that show only a typical value are ensured by design and may not be tested in production.

Typical Characteristics

All the curves are based on measurements made on a PCB design with dimensions of 3.2 inches (W) × 2.7 inches (L) × 0.062 inch (T) and 4 layers of 2 oz copper.
The safe operating area (SOA) curves displays the temperature boundaries within an operating system by incorporating the thermal resistance and system power loss. A buck converter is used for measuring the SOA. Figure 2 outlines the temperature and airflow conditions required for a given load current. The area under the curve dictates the SOA for different airflow conditions.
LMG5200 D001_SNOSCY4.gif
VDD = 5 V
Figure 1. VDD Supply Current vs Switching Frequency
LMG5200 D008_SNOSCY4.gif
GaN third quadrant conduction.
Figure 3. Source-to-Drain Current vs Source-to-Drain Voltage
LMG5200 D002_SNOSCY4.gif
VIN = 48 V VOUT = 5 V fSW = 1 MHz
Figure 2. Safe Operating Area
LMG5200 D011_SNOSCY4.gif
.
Figure 4. GaN FET On-Resistance vs Junction Temperature