ZHCSCR0A August   2014  – December 2014 LMH3401

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: VS = 5 V
    6. 7.6 Electrical Characteristics: VS = 3.3 V
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1  Output Reference Points
    2. 8.2  ATE Testing and DC Measurements
    3. 8.3  Frequency Response
    4. 8.4  S-Parameters
    5. 8.5  Frequency Response with Capacitive Load
    6. 8.6  Distortion
    7. 8.7  Noise Figure
    8. 8.8  Pulse Response, Slew Rate, Overdrive Recovery
    9. 8.9  Power Down
    10. 8.10 VCM Frequency Response
    11. 8.11 Test Schematics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Fully-Differential Amplifier
      2. 9.3.2 Single-Ended to Differential Signals
        1. 9.3.2.1 Resistor Design Equations for Single-to-Differential Applications
        2. 9.3.2.2 Input Impedance Calculations
      3. 9.3.3 Differential to Differential Signals
      4. 9.3.4 Output Common-Mode Voltage
    4. 9.4 Device Functional Modes
      1. 9.4.1 Operation with a Split Supply
      2. 9.4.2 Operation with a Single Supply
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Input and Output Headroom Considerations
      2. 10.1.2 Noise Analysis
      3. 10.1.3 Thermal Considerations
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Driving Matched Loads
        2. 10.2.2.2 Driving Capacitive Loads
        3. 10.2.2.3 Driving ADCs
          1. 10.2.2.3.1 SNR Considerations
          2. 10.2.2.3.2 SFDR Considerations
          3. 10.2.2.3.3 ADC Input Common-Mode Voltage Considerations—AC-Coupled Input
          4. 10.2.2.3.4 ADC Input Common-Mode Voltage Considerations—DC-Coupled Input
        4. 10.2.2.4 GSPS ADC Driver
        5. 10.2.2.5 Common-Mode Voltage Correction
        6. 10.2.2.6 Active Balun
        7. 10.2.2.7 Application Curves
    3. 10.3 Do's and Don'ts
      1. 10.3.1 Do:
      2. 10.3.2 Don't:
  11. 11Power-Supply Recommendations
    1. 11.1 Supply Voltage
    2. 11.2 Single Supply
    3. 11.3 Split Supply
    4. 11.4 Supply Decoupling
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13器件和文档支持
    1. 13.1 器件支持
      1. 13.1.1 器件命名规则
    2. 13.2 文档支持
      1. 13.2.1 相关文档 
    3. 13.3 商标
    4. 13.4 静电放电警告
    5. 13.5 术语表
  14. 14机械封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage Power supply 5.5 V
Input voltage range VS– – 0.7 VS+ + 0.7 V
Current Input current, IN+, IN– 10 mA
Output current (sourcing or sinking) OUT+, OUT– 100 mA
Continuous power dissipation See Thermal Information
Temperature Maximum junction temperature, TJ 150 °C
Maximum junction temperature, continuous operation, long-term reliability 125 °C
Operating free-air, TA –40 85 °C
Storage, Tstg –40 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply voltage (VS = VS+ – VS–) 3.15 5 5.25 V
Operating junction temperature, TJ –40 125 °C
Ambient operating air temperature, TA –40 25 85 °C

7.4 Thermal Information

THERMAL METRIC(1) LMH3401 UNIT
RMS (UQFN)
14 PINS
RθJA Junction-to-ambient thermal resistance 101 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 51
RθJB Junction-to-board thermal resistance 61
ψJT Junction-to-top characterization parameter 4.2
ψJB Junction-to-board characterization parameter 61
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics: VS = 5 V

Test conditions are at TA = 25°C, VS+ = 2.5 V, VS– = –2.5 V, VCM = 0 V, RL = 200-Ω differential, G = 16 dB, single-ended input and differential output, and input and output referenced to midsupply, unless otherwise noted. Measured using an evaluation module (EVM) as discussed in the Parameter Measurement Information section.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT TEST
LEVEL(1)
AC PERFORMANCE
Small-signal bandwidth VO = 200 mVPP(3) 7 GHz C
Large-signal bandwidth VO = 2 VPP 4 GHz C
Bandwidth for 0.1-dB flatness VO = 2 VPP 700 MHz C
Slew rate VO = 2-V step 18000 V/µs C
Rise time VO = 1-V step 80 ps C
Fall time VO = 1-V step 80 ps C
Settling time to 1% VO = 2-V step 1 ns C
Input return loss, s11 See S-Parameters section, f < 1 GHz –20 dB C
Output return loss, s22 See S-Parameters section, f < 1 GHz –20 dB C
Reverse isolation, s12 See S-Parameters section, f < 1 GHz –65 dB C
Second-order harmonic distortion f = 10 MHz, VO = 2 VPP –96 dBc C
f = 500 MHz, VO = 2 VPP –79 dBc C
f = 1 GHz, VO = 2 VPP –64 dBc C
f = 2 GHz, VO = 2 VPP –55 dBc C
Third-order harmonic distortion f = 10 MHz, VO = 2 VPP –102 dBc C
f = 500 MHz, VO = 2 VPP –77 dBc C
f = 1 GHz, VO = 2 VPP –72 dBc C
f = 2 GHz, VO = 2 VPP –40 dBc C
Second-order intermodulation distortion f = 10 MHz, VO = 1 VPP per tone –90 dBc C
f = 500 MHz, VO = 1 VPP per tone –77 dBc C
f = 1 GHz, VO = 1 VPP per tone –71 dBc C
f = 2 GHz, VO = 1 VPP per tone –56 dBc C
Third-order intermodulation distortion f = 10 MHz, VO = 1 VPP per tone –101 dBc C
f = 500 MHz, VO = 1 VPP per tone –86 dBc C
f = 1 GHz, VO = 1 VPP per tone –73 dBc C
f = 2 GHz, VO = 1 VPP per tone –52 dBc C
1-dB compression point f = 200 MHz, power measured at amplifier 13 dBm C
Output third-order intercept point At device outputs, f = 200 MHz 45 dBm C
At device outputs, f = 1000 MHz 33 dBm C
Input-referred voltage noise f > 1 MHz 1.4 nV/√Hz C
Noise figure 50-Ω, single-ended source f = 200 MHz 9 dB C
f = 1 GHz 9.4 dB C
Overdrive recovery Overdrive = ±0.5 V 300 ps C
Output balance error f = 1000 MHz 45 dBc C
Output impedance At dc 16 20 24 Ω A
DC PERFORMANCE
Gain 50-Ω single-ended source, with external 50-Ω termination 15.4 16 16.6 dB A
100-Ω differential source, external termination 12 dB C
Differential output offset TA = 25°C ±2 ±20 mV A
TA = –40°C to 85°C ±4 mV C
Differential output offset temperature drift 4 µV/°C C
Common-mode rejection ratio TA = 25°C 72 dBc C
INPUT
Differential input resistance 22 25 29 Ω A
Single ended input resistance With external 50-Ω resistor on INN to ground 45 50 55 Ω A
Input common-mode range low Inputs shorted together, VCM = 2.5 V VS– – 0.7 VS– + 0.2 V A
Input common-mode range high Inputs shorted together, VCM = 2.5 V VS+ – 1.3 VS+ – 1.2 V A
OUTPUT
Output voltage range high Measured single-ended TA = 25°C VS+ – 1.3 VS+ – 1.1 V A
TA = –40°C to 85°C VS+ – 1.2 V C
Output voltage range low Measured single-ended TA = 25°C VS– + 1.3 VS– + 1.1 V A
TA = –40°C to 85°C VS– + 1.2 V C
Differential output voltage 5.6 VPP C
Differential output current drive VO = 0 V 40 50 mA A
OUTPUT COMMON-MODE VOLTAGE CONTROL
VCM small-signal bandwidth VOUT_CM = 200 mVPP 3.3 GHz C
VCM slew rate VOUT_CM = 500 mVPP 2900 V/µs C
VCM voltage range low Differential gain shift < 1 dB VS– + 1.6 VS– + 2.0 V A
VCM voltage range high Differential gain shift < 1 dB VS+ – 2.0 VS+ – 1.6 V A
VCM gain VCM = 0 V 0.98 1.0 1.01 V/V A
VOUT_CM output common-mode offset
from VCM input voltage (2)
VCM = 0 V –27 mV C
VCM temperature drift –13.6 µV/°C C
POWER SUPPLY
Quiescent current TA = 25°C 50 55 62 mA A
Power-supply rejection ratio VS+ 60 84 dB A
VS– 50 75 dB A
POWER DOWN
Enable or disable voltage threshold Device powers on below 0.8 V,
device powers down above 1.2 V
0.9 1.1 1.2 V A
Power-down quiescent current 1 3 6 mA A
PD bias current PD = 2.5 V 10 ±100 µA C
Turn-on time delay Time to VO = 90% of final value 10 ns C
Turn-off time delay Time to VO = 10% of original value 10 ns C
(1) Test levels: (A) 100% tested at 25°C. Overtemperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.
(2) VOUT_CM = (OUT+ + OUT–) / 2 and is set by the CM pin VOUT_CM ≈ VCM.
(3) All output voltages are specified as differential voltages unless otherwise noted. Output differential voltage is defined as VO = (VO+ – VO–).

7.6 Electrical Characteristics: VS = 3.3 V

Test conditions are at TA = 25°C, VS+ = 1.65 V, VS– = –1.65 V, VCM = 0 V, RL = 200-Ω differential, G = 16 dB, single-ended input and differential output, and input and output referenced to midsupply, unless otherwise noted. Measured using an EVM as discussed in the Parameter Measurement Information section.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT TEST
LEVEL(1)
AC PERFORMANCE
Small-signal bandwidth VO = 200 mVPP 6.5 GHz C
Large-signal bandwidth VO = 1 VPP 4 GHz C
Bandwidth for 0.1-dB flatness VO = 1 VPP 700 MHz C
Slew rate VO = 1-V step 17600 V/µs C
Rise time VO = 1-V step 90 ps C
Fall time VO = 1-V step 90 ps C
Input return loss, s11 See S-Parameters section, f < 1 GHz –20 dB C
Output return loss, s22 See S-Parameters section, f < 1 GHz –20 dB C
Reverse isolation, s12 See S-Parameters section, f < 1 GHz –65 dB C
Second-order harmonic distortion f = 10 MHz, VO = 1 VPP –97 dBc C
f = 500 MHz, VO = 1 VPP –74 dBc C
f = 1 GHz, VO = 1 VPP –59 dBc C
f = 2 GHz, VO = 1 VPP –48 dBc C
Third-order harmonic distortion f = 10 MHz, VO = 1 VPP –100 dBc C
f = 500 MHz, VO = 1 VPP –66 dBc C
f = 1 GHz, VO = 1 VPP –56 dBc C
f = 2 GHz, VO = 1 VPP –49 dBc C
Second-order intermodulation distortion f = 10 MHz, VO = 0.5 VPP per tone –95 dBc C
f = 500 MHz, VO = 0.5 VPP per tone –81 dBc C
f = 1 GHz, VO = 0.5 VPP per tone –72 dBc C
f = 2 GHz, VO = 0.5 VPP per tone –60 dBc C
Third-order intermodulation distortion f = 10 MHz, VO = 0.5 VPP per tone –100 dBc C
f = 500 MHz, VO = 0.5 VPP per tone –86 dBc C
f = 1 GHz, VO = 0.5 VPP per tone –78 dBc C
f = 2 GHz, VO = 0.5 VPP per tone –56 dBc C
Output third-order intercept point At device outputs, f = 10 MHz 39.5 dBm C
At device outputs, f = 1000 MHz 31 dBm C
Input-referred voltage noise f > 1 MHz 1.4 nV/√Hz C
Noise figure 50-Ω, single-ended source f = 200 MHz 9 dB C
f = 1 GHz 9.4 dB C
Overdrive recovery Overdrive = ±0.5 V 400 ps C
Output impedance f = 100 MHz 16 20 24 Ω A
DC PERFORMANCE
Gain 50-Ω, single-ended source with external 50-Ω termination 15.4 16 16.6 dB A
100-Ω differential source, external termination 12 dB C
Differential output offset voltage TA = 25°C ±2 ±20 mV A
TA = –40°C to 85°C ±4 mV C
Differential output voltage drift 3.6 µV/°C C
Common-mode rejection ratio –72 dB A
INPUT
Differential input resistance 22 25 29 Ω A
Single-ended input resistance With external 50-Ω resistor on INN to ground 45 50 55 Ω A
Input common-mode range low Inputs shorted together VS– – 0.3 VS– + 0.2 V A
Input common-mode range high Inputs shorted together VS+ – 1.5 VS+ –1.6 V A
OUTPUT
Output voltage range high Measured single-ended TA = 25°C VS+ – 1.2 VS+ – 0.95 V A
TA = –40°C to 85°C VS+ – 1.05 V C
Output voltage range low Measured single-ended TA = 25°C VS– + 1.2 VS– + 0.95 V A
TA = –40°C to 85°C VS– + 1.05 V C
Differential output voltage 2.8 VPP C
Differential output current drive VO = 0 V 30 40 mA A
OUTPUT COMMON-MODE VOLTAGE CONTROL
VCM small-signal bandwidth VOUT_CM = 200 mVPP 3 GHz C
VCM slew rate VOUT_CM = 500 mVPP 2600 V/µs C
VCM voltage range low Differential gain shift < 1 dB VS– + 1.35 VS– + 1.55 V A
VCM voltage range high Differential gain shift < 1 dB VS+ – 1.55 VS+ – 1.35 V A
VCM gain VCM = 0 V 0.98 1.0 1.01 V/V A
Output common-mode offset
from VCM input
VCM = 0 V –7 mV C
Common-mode voltage drift –34.6 µV/°C C
POWER SUPPLY
Quiescent current TA = 25°C 49 54 60 mA A
Power-supply rejection ratio VS+ 60 84 dB A
VS– 50 75 dB A
POWER-DOWN
Enable or disable voltage threshold Device powers on below 0.8 V,
device powers down above 1.2 V
1.0 1.1 1.2 V A
Power-down quiescent current 1 1.6 5 mA A
PD bias current PD = 2.5 V 10 ±100 µA C
Turn-on time delay Time to VO = 90% of final value 10 ns C
Turn-off time delay Time to VO = 10% of original value 10 ns C

7.7 Typical Characteristics

At TA = 25°C, split supplies, VCM = 0 V, RL = 200-Ω differential (ROUT = 40 Ω each), G = 16 dB, single-ended input and differential output, and input and output pins referenced to midsupply, unless otherwise noted. Measured using an EVM as discussed in the section (see Figure 49 to Figure 53).
TC_Sds21_m20dBm_RS_bos695.png
VS = ±2.5 V, VOUT_AMP = 0.4 VPP
Figure 1. Frequency Response Single-Ended Input
TC_sdd21_m20_RS_bos695.png
No input matching resistors, VOUT_AMP = 0.2 VPP,
net gain = 14 dB, VS = ±2.5 V
Figure 3. Frequency Response Differential Input
TC_Sds21_0dBm_RS_bos695.png
VS = ±2.5 V, VOUT_AMP = 4 VPP
Figure 5. Large-Signal Frequency Response
(Single-Ended Input)
TC_CapLoad_5V_1Vpp_bos695.png
VS = ±2.5 V, VOUT_AMP = 1 VPP,
capacitance at DUT output pins
Figure 7. Frequency Response with Capacitive Load
TC_Sparam_seDiff_5V_bos695.png
VS = ±2.5 V, VOUT_AMP = 200 mVPP
Figure 9. S-Parameters (±2.5-V Supply)
TC_CMFreq_5V_bos695.png
VS = ±2.5 V, VOUT_AMP = 100 mVPP
Figure 11. Common-Mode Frequency Response
TC_H23_5V_freq_bos695.png
VS = ±2.5 V, VOUT_AMP = 2 VPP
Figure 13. HD2 and HD3 (±2.5-V Supply)
TC_HD23_temp_5V_bos695.png
VS = ±2.5 V, VOUT_AMP = 2 VPP, f = 1 GHz
Figure 15. HD2 and HD3 vs Temperature
TC_HD23_temp_3p3V_bos695.png
VS = ±1.65 V, VOUT_AMP = 1 VPP, f = 1 GHz
Figure 17. HD2 and HD3 vs Temperature
TC_HD_VCM_200MHz_3p3Vs_bos695.png
VS = ±1.65 V, f = 200 MHz, VOUT_AMP = 1 VPP
Figure 19. HD2 and HD3 vs Output Common-Mode Voltage
TC_HD_Vcm_1GHz_3p3Vs_bos695.png
VS = ±1.65 V, f = 1000 MHz, VOUT_AMP = 1 VPP
Figure 21. HD2 and HD3 vs Output Common-Mode Voltage
TC_VICM_H23_200MHz_3V_bos695.png
VS = ±1.65 V, f = 200 MHz, VOUT_AMP = 1 VPP
Figure 23. HD2 and HD3 vs Input Common-Mode Voltage
TC_VICM_H23_500MHz_3V_bos69.png
VS = ±1.65 V, f = 500 MHz, VOUT_AMP = 1 VPP
Figure 25. HD2 and HD3 vs Input Common-Mode Voltage
TC_VICM_H23_1GHz_3V_bos695.png
VS = ±1.65 V, f = 1 GHz, VOUT_AMP = 1 VPP
Figure 27. HD2 and HD3 vs Input Common-Mode Voltage
TC_IMD23_100_Ohm_bos695.png
VS = ±2.5 V, VOUT_AMP = 1 VPP per tone, RLOAD = 100 Ω
Figure 29. Intermodulation Distortion vs Frequency
(100-Ω Load)
TC_IMD23_200MHz_5V_bos695.png
VS = ±2.5 V, power measured at amplifier
Figure 31. Intermodulation Distortion (f = 200 MHz)
TC_IMD23_1GHz_5V_bos695.png
VS = ±2.5 V, power measured at amplifier
Figure 33. Intermodulation Distortion (f = 1000 MHz)
TC_Noise_bos695.png
VS = ±2.5 V
Figure 35. Noise Figure vs Frequency
TC_VCM_Pulse_5V_bos695.png
VS = ±2.5 V, VOUT_AMP, VCM = (VO+ + VO–) / 2
Figure 37. Pulse Response Common-Mode
TC_Vcm_1VPulse_3p3V_bos695.png
VS = ±1.65 V, VOUT_AMP
Figure 39. Pulse Response Common-Mode
TC_Balance_Error_bos695.png
Single-ended input, differential output
Figure 41. Balance Error (Scd21)
TC_C027_PDTime_5V_bos695.png
VS = ±2.5 V
Figure 43. Power-Down Timing
TC_Temp_gain_bos695.png
VS = ±2.5 V
Figure 45. Gain Drift vs Temperature
TC_VosDiff_temp_bos695.png
At dc
Figure 47. Differential Offset Voltage vs Temperature
TC_Sdd21_37p5_5V_m20in_bos695.png
External 37.5-Ω input matching resistors, VOUT_AMP = 0.4 VPP, gain = 12 dB, see Figure 57, VS = ±1.65 V and ±2.5 V
Figure 2. Frequency Response Differential Input
TC_1Vpp_Freq_Sds_bos695.png
Single-ended input, VOUT_AMP = 1 VPP
Figure 4. 1-VPP Frequency Response vs Supply Voltage
TC_freq_temp_1Vpp_5Vs_bos695.png
VS = ±2.5 V, VOUT_AMP = 1 VPP
Figure 6. Frequency Response vs Temperature
TC_CapLoad_3V_1Vpp_bos695.png
VS = ±1.65 V, VOUT_AMP = 1 VPP,
capacitance at DUT output pins
Figure 8. Frequency Response with Capacitive Load
TC_Sparam_seDiff_3p3V_bos695.png
VS = ±1.65 V, VOUT_AMP = 200 mVPP
Figure 10. S-Parameters (3.3-V Supply)
TC_CMFreq_3p3V_bos695.png
VS = ±1.65 V, VOUT_AMP = 100 mVPP
Figure 12. Common-Mode Frequency Response
TC_HD23_100_Ohm_bos695.png
VS = ±2.5 V, VOUT_AMP = 2 VPP, RLOAD = 100 Ω
Figure 14. HD2 and HD3 (±2.5-V Supply, 100-Ω Load)
TC_H23_freq_3p3V_bos695.png
VS = ±1.65 V, VOUT_AMP = 1 VPP
Figure 16. HD2 and HD3 (3.3-V VS)
TC_HD_VCM_200MHz_5Vs_bos695.png
VS = ±2.5 V, f = 200 MHz, VOUT_AMP = 2 VPP
Figure 18. HD2 and HD3 vs Output Common-Mode Voltage
TC_HD_Vcm_1GHz_5Vs_bos695.png
VS = ±2.5 V, f = 1000 MHz, VOUT_AMP = 2 VPP
Figure 20. HD2 and HD3 vs Output Common-Mode Voltage
TC_VICM_H23_200MHz_5V_bos695.png
VS = ±2.5 V, f = 200 MHz, VOUT_AMP = 2 VPP
Figure 22. HD2 and HD3 vs Input Common-Mode Voltage
TC_VICM_H23_500MHz_5V_bos695.png
VS = ±2.5 V, f = 500 MHz, VOUT_AMP = 2 VPP
Figure 24. HD2 and HD3 vs Input Common-Mode Voltage
TC_VICM_H23_1GHz_5V_bos695.png
VS = ±2.5 V, f = 1 GHz, VOUT_AMP = 2 VPP
Figure 26. HD2 and HD3 vs Input Common-Mode Voltage
TC_IM23_5V_freq_bos695.png
VS = ±2.5 V, VOUT_AMP = 1 VPP per tone,
Figure 28. Intermodulation Distortion vs Frequency
TC_IM23_freq_3p3V_bos695.png
VS = ±1.65 V, VOUT_AMP = 0.5 VPP per tone
Figure 30. Intermodulation Distortion vs Frequency
TC_IMD23_500MHz_5V_bos695.png
VS = ±2.5 V, power measured at amplifier
Figure 32. Intermodulation Distortion (f = 500 MHz)
TC_Voltage_Noise_bos695.png
VS = ±2.5 V
Figure 34. Input-Referred Voltage Noise
TC_5V_Pulse_SE_Dif_bos695.png
VS = ±2.5 V, VOUT_AMP
Figure 36. Pulse Response for Various VO
TC_Pulse_3p3V_bos695.png
VS = ±1.65 V, VOUT_AMP
Figure 38. Pulse Response for Various VO
TC_CMRR_bos695.png
Differential input
Figure 40. CMRR (Sdc21)
TC_Scc21_5V_bos695.png
Common-mode input, common-mode output,
RS = 25 Ω, RL = 50 Ω
Figure 42. Common-Mode Frequency Response (Scc21)
TC_C028_Overdrive_5v_bos695.png
VS = ±2.5 V
Figure 44. Overdrive Recovery
TC_Icc_temp_5V_bos695.png
VS = ±2.5 V
Figure 46. Supply Current vs Temperature
TC_VosCM_temp_bos695.png
At dc
Figure 48. Common-Mode Offset Voltage vs Temperature