ZHCSDQ5A April   2015  – May 2015 LMH6401

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 SPI Timing Requirements
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Setup Diagrams
    2. 8.2 Output Measurement Reference Points
    3. 8.3 ATE Testing and DC Measurements
    4. 8.4 Frequency Response
    5. 8.5 Distortion
    6. 8.6 Noise Figure
    7. 8.7 Pulse Response, Slew Rate, and Overdrive Recovery
    8. 8.8 Power Down
    9. 8.9 VOCM Frequency Response
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
    4. 9.4 Device Functional Modes
      1. 9.4.1 Power-On Reset (POR)
      2. 9.4.2 Power-Down (PD)
      3. 9.4.3 Thermal Feedback Control
      4. 9.4.4 Gain Control
    5. 9.5 Programming
      1. 9.5.1 Details of the Serial Interface
      2. 9.5.2 Timing Diagrams
    6. 9.6 Register Maps
      1. 9.6.1 Revision ID (address = 0h, Read-Only) [default = 03h]
      2. 9.6.2 Product ID (address = 1h, Read-Only) [default = 00h]
      3. 9.6.3 Gain Control (address = 2h) [default = 20h]
      4. 9.6.4 Reserved (address = 3h) [default = 8Ch]
      5. 9.6.5 Thermal Feedback Gain Control (address = 4h) [default = 27h]
      6. 9.6.6 Thermal Feedback Frequency Control (address = 5h) [default = 45h]
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Analog Input Characteristics
      2. 10.1.2 Analog Output Characteristics
        1. 10.1.2.1 Driving Capacitive Loads
      3. 10.1.3 Thermal Feedback Control
        1. 10.1.3.1 Step Response Optimization using Thermal Feedback Control
      4. 10.1.4 Thermal Considerations
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Driving ADCs
          1. 10.2.2.1.1 SNR Considerations
          2. 10.2.2.1.2 SFDR Considerations
          3. 10.2.2.1.3 ADC Input Common-Mode Voltage Considerations—AC-Coupled Input
          4. 10.2.2.1.4 ADC Input Common-Mode Voltage Considerations—DC-Coupled Input
      3. 10.2.3 Application Curves
    3. 10.3 Do's and Don'ts
      1. 10.3.1 Do:
      2. 10.3.2 Don't:
  11. 11Power-Supply Recommendations
    1. 11.1 Single-Supply Operation
    2. 11.2 Split-Supply Operation
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Examples
  13. 13器件和文档支持
    1. 13.1 文档支持
      1. 13.1.1 相关文档 
    2. 13.2 社区资源
    3. 13.3 商标
    4. 13.4 静电放电警告
    5. 13.5 术语表
  14. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage V = (VS+) – (VS–) 5.5 V
Digital input pins –0.3 VS+ V
Maximum input difference voltage 2.1 V
Maximum input voltage VS– VS+ V
Temperature Maximum junction, TJ 150 °C
Maximum junction, continuous operation, long-term reliability 125 °C
Operating free-air, TA –40 85 °C
Storage, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply voltage 4.0 5.0 5.25 V
Minimum operating positive (VS+) supply voltage 2.0 V
Ambient operating air temperature, TA –40 25 85 °C
Operating junction temperature, TJ –40 125 °C

7.4 Thermal Information

THERMAL METRIC(1) LMH6401 UNIT
RMZ (UQFN)
16 PINS
RθJA Junction-to-ambient thermal resistance 78 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 43 °C/W
RθJB Junction-to-board thermal resistance 24 °C/W
ψJT Junction-to-top characterization parameter 2.3 °C/W
ψJB Junction-to-board characterization parameter 24 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV = 26 dB, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT TEST
LEVEL(1)
DYNAMIC PERFORMANCE
SSBW Small-signal, –3-dB bandwidth AV = 26 dB, VO = 200 mVPPD 4.5 GHz C
LSBW Large-signal, –3-dB bandwidth AV = 26 dB, VO = 2.0 VPPD 4.5 GHz C
Bandwidth for 0.1-dB flatness AV = 26 dB, VO = 2.0 VPPD 500 MHz C
SR Slew rate VO = 2-V step 18200 V/µs C
tR, tF Rise and fall time VO = 2-V step, 10% to 90% 82 ps C
Overdrive recovery Overdrive = ±0.5 V 600 ps C
Output balance error f = 1 GHz –47 dB C
ts Settling time to 1% VO = 2-V step, RL= 200 Ω 700 ps C
HD2 Second-harmonic distortion f = 200 MHz, VO = 2.0 VPPD –73 dBc C
f = 500 MHz, VO = 2.0 VPPD –68 dBc C
f = 1 GHz, VO = 2.0 VPPD –63 dBc C
f = 2 GHz, VO = 2.0 VPPD –58 dBc C
HD3 Third-harmonic distortion f = 200 MHz, VO = 2.0 VPPD –80 dBc C
f = 500 MHz, VO = 2.0 VPPD –72 dBc C
f = 1 GHz, VO = 2.0 VPPD –63 dBc C
f = 2 GHz, VO = 2.0 VPPD –54 dBc C
OIP2 Output second-order intercept point f = 200 MHz, PO = –2 dBm per tone 67 dBm C
f = 500 MHz, PO = –2 dBm per tone 65 dBm C
f = 1 GHz, PO = –2 dBm per tone 60 dBm C
f = 2 GHz, PO = –2 dBm per tone 52 dBm C
OIP3 Output third-order intercept point f = 200 MHz, PO = –2 dBm per tone 43 dBm C
f = 500 MHz, PO = –2 dBm per tone 40 dBm C
f = 1 GHz, PO = –2 dBm per tone 33 dBm C
f = 2 GHz, PO = –2 dBm per tone 27 dBm C
IMD2 Second-order intermodulation distortion f = 500 MHz, VO = 1.0 VPP per tone –68 dBc C
IMD3 Third-order intermodulation distortion f = 500 MHz, VO = 1.0 VPP per tone –83 dBc C
P1dB 1-dB compression point f = 500 MHz, power measured at amplifier output 18.3 dBm C
NF Noise figure RS = 100 Ω f = 200 MHz 7.7 dB C
f = 1 GHz 8 dB C
Output-referred noise voltage AV = 26 dB, f > 1 MHz 30.4 nV/√Hz C
S12 Reverse transmission (S12) f = 1 GHz –65 dB C
S11 Input return loss (S11) 100-Ω system, f = 2 GHz –15 dB C
GAIN PARAMETERS
Maximum voltage gain 25.5 26.0 26.5 dB A
Minimum voltage gain –7.5 –6.0 –4.5 dB A
Gain range 32 dB C
Gain step size 0.9 1 1.1 dB A
Cumulative gain error AV = 26 dB to 10 dB
(referenced to 26-dB gain)
–0.5 0.5 dB A
AV = 26 dB to –6 dB
(referenced to 26-dB gain)
–1 1 dB A
Gain step transition time 1 ns C
ANALOG INPUT CHARACTERISTICS
Ri Input resistance Differential 85 100 112 Ω A
Ci Input capacitance Differential 0.8 pF C
VICM Input common-mode voltage Self-biased to mid-supply –0.3 0.3 V A
VICLR Low-level input common-mode voltage range Differential gain shift < 1 dB (VS–) + 1.5 V C
VICHR High-level input common-mode voltage range Differential gain shift < 1 dB (VS+) – 1.5 V C
ANALOG OUTPUT CHARACTERISTICS
Ro Output resistance Differential 18 20 25 Ω A
VOL Low-level output voltage range Low-level clipping level (VS–) + 1 (VS–) + 1.1 V A
VOH High-level output voltage range High-level clipping level (VS+) – 1.1 (VS+) – 1 V A
VOM Maximum output voltage swing Differential 6.0 VPPD C
CMRR Common-mode rejection ratio ±0.3-V input common-mode shift 38.4 45 dB A
POWER SUPPLY
VS Supply voltage [V = (VS+) – (VS–)] 4.0 5.0 5.25 V A
Minimum positive (VS+) supply voltage 2.0 V A
PSRR Power-supply rejection ratio VS–, measured at 1-kHz sine-wave 66 70 dB A
VS+, measured at 1-kHz sine-wave 66 70 dB A
IQ Quiescent current PD = 0 (device enabled) 60 69 78 mA A
PD = 1 (device disabled) 1 7 12 mA A
OUTPUT COMMON-MODE CONTROL (VOCM Pin)
SSBW Small-signal bandwidth VOCM = 200 mVPP 160 MHz C
VOCM voltage range low VOCM gain < 2% –0.5 V A
VOCM voltage range high VOCM gain < 2% 0.5 V A
VOO Output offset voltage All gain settings –40 40 mV A
VOCM gain 1.0 V C
VOCM Common-mode offset voltage VOCM pin driven to GND –10 10 mV A
POWER DOWN (PD Pin)
Power-down quiescent current 1 7 12 mA A
PD bias current PD = 2.5 V 80 100 µA A
Turn-on time delay Time to VO = 90% of final value 70 ns C
Turn-off time delay Time to VO = 10% of original value 10 ns C
DIGITAL INPUT/OUTPUT
VIH High-level input voltage Referred to GND 1.2 VS+ V A
VIL Low-level input voltage Referred to GND 0.8 V A
VOH High-level output voltage 1 kΩ to GND 1.4 V A
VOL Low-level output voltage 1 kΩ to GND 0.4 V A
(1) Test levels: (A) 100% DC tested at 25°C unless otherwise specified. Over-temperature limits by characterization and simulation. (B) Limits set by bench verification and simulation. (C) Typical value only for information.
(2) Ensured by design.
(3) Reference to negative edge of SCLK.
(4) Reference to positive edge of SCLK.

7.6 SPI Timing Requirements(2)

At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV = 26 dB, unless otherwise noted. Limits set by bench verification and simulation.
MIN NOM MAX UNIT
fs_c SCLK frequency 50 MHz
tPH SCLK pulse duration, high 10 ns
tPL SCLK pulse duration, low 10 ns
tSU SDI setup 3 ns
tH SDO hold 3 ns
tIZ SDO tri-state 3 ns
tODZ SDO driven to tri-state(3) 5 ns
tOZD SDO tri-state to driven 3 ns
tOD SDO output delay(3) 3 ns
tCSS CS setup(4) 3 ns
tCSH CS hold 3 ns
tIAG Inter-access gap 20 ns

7.7 Typical Characteristics

At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV = 26 dB, unless otherwise noted. Differential input and output, and input and output pins referenced to mid-supply, unless otherwise noted. Measured using an EVM as discussed in the Parameter Measurement Information section.
LMH6401 D013_SBOS730_LMH6401.gif
Figure 1. Voltage Gain vs Frequency (1-dB Gain Steps)
LMH6401 D027_SBOS730_LMH6401.gif
Figure 3. S-Parameters vs Frequency
LMH6401 D024_SBOS730_LMH6401.gif
Figure 5. Frequency Response vs Capacitive Load
LMH6401 D019_SBOS730_LMH6401.gif
PO = –2 dBm per tone
Figure 7. Output IP3 vs Frequency and Temperature
LMH6401 D022_SBOS730_LMH6401.gif
Figure 9. Output IP3 vs Total Output Power per Tone
LMH6401 D003_SBOS730_LMH6401.gif
Figure 11. Second-Order Harmonic Distortion vs Frequency
LMH6401 D005_SBOS730_LMH6401.gif
Figure 13. Second-Order Harmonic Distortion vs Frequency
LMH6401 D001_SBOS730_LMH6401.gif
f = 500 MHz
Figure 15. Harmonic Distortion vs Gain Settings
LMH6401 D009_SBOS730_LMH6401.gif
f = 500 MHz
Figure 17. Second-Order Harmonic Distortion vs Temperature
LMH6401 D007_SBOS730_LMH6401.gif
f = 500 MHz, (VS+) – (VS–) = 4 V
Figure 19. Second-Order Harmonic Distortion vs Temperature
LMH6401 D011_SBOS730.gif
f = 500 MHz
Figure 21. Harmonic Distortion vs
Output Common-Mode Voltage
LMH6401 D039_SBOS730_LMH6401.gif
Figure 23. Output P1dB vs Frequency
LMH6401 D014_SBOS730_LMH6401.gif
Figure 25. Noise Figure vs Frequency
LMH6401 D025_SBOS730_LMH6401.gif
Scc21 / Sdd21
Figure 27. CMRR vs Frequency
LMH6401 D029_SBOS730_LMH6401.gif
Figure 29. Overdrive Recovery (AV = 26 dB)
LMH6401 D043_SBOS730_LMH6401.gif
f = 500 MHz
Figure 31. Cumulative Gain and Phase Step Error vs
Gain Settings
LMH6401 D017_SBOS730_LMH6401.gif
Figure 33. Output Impedance vs Frequency
LMH6401 D037_SBOS730_LMH6401.gif
Figure 35. Output Step Response
LMH6401 D031_SBOS730_LMH6401.gif
Figure 37. Gain Switching Response (AV = 26 dB to 18 dB)
LMH6401 D035_SBOS730_LMH6401.gif
Figure 39. Gain Switching Response (AV = 26 dB to 10 dB)
LMH6401 D033_SBOS730_LMH6401.gif
Figure 41. Gain Switching Response (AV = 26 dB to 2 dB)
LMH6401 D021_SBOS730_LMH6401.gif
Figure 2. Maximum Gain vs Temperature
LMH6401 D042_SBOS730_LMH6401.gif
Figure 4. Input Return Loss vs Gain Settings
LMH6401 D018_SBOS730_LMH6401.gif
PO = –2 dBm per tone
Figure 6. Output IP3 vs Frequency and Gain Settings
LMH6401 D020_SBOS730_LMH6401.gif
f = 500 MHz, PO = –2 dBm per tone
Figure 8. Output IP3 vs Supply Voltage and Temperature
LMH6401 D023_SBOS730_LMH6401.gif
PO = –2 dBm per tone
Figure 10. Intermodulation Distortion vs Frequency
LMH6401 D004_SBOS730_LMH6401.gif
Figure 12. Third-Order Harmonic Distortion vs Frequency
LMH6401 D006_SBOS730_LMH6401.gif
Figure 14. Third-Order Harmonic Distortion vs Frequency
LMH6401 D002_SBOS730.gif
f = 500 MHz
Figure 16. Harmonic Distortion vs Differential VPP
LMH6401 D010_SBOS730_LMH6401.gif
f = 500 MHz
Figure 18. Third-Order Harmonic Distortion vs
Temperature
LMH6401 D008_SBOS730_LMH6401.gif
f = 500 MHz, (VS+) – (VS–) = 4 V
Figure 20. Third-Order Harmonic Distortion vs
Temperature
LMH6401 D012_SBOS730_LMH6401.gif
f = 500 MHz, gain = –6 dB
Figure 22. Harmonic Distortion vs Input CM Voltage
LMH6401 D040_SBOS730_LMH6401.gif
Figure 24. Output P1dB vs Temperature
LMH6401 D015_SBOS730_LMH6401.gif
Figure 26. Noise Figure vs Gain Settings
LMH6401 D026_SBOS730_LMH6401.gif
Sdc21/Sdd21
Figure 28. Output Balance Error vs Frequency
LMH6401 D030_SBOS730_LMH6401.gif
Figure 30. Overdrive Recovery (AV = 10 dB)
LMH6401 D016_SBOS730_LMH6401.gif
Figure 32. Input Impedance vs Frequency
LMH6401 D041_SBOS730_LMH6401.gif
Figure 34. Supply Current vs Temperature
LMH6401 D028_SBOS730_LMH6401.gif
Figure 36. Power-Down Transition Response
LMH6401 D032_SBOS730_LMH6401.gif
Figure 38. Gain Switching Response (AV = 18 dB to 26 dB)
LMH6401 D036_SBOS730_LMH6401.gif
Figure 40. Gain Switching Response (AV = 10 dB to 26 dB)
LMH6401 D034_SBOS730_LMH6401.gif
Figure 42. Gain Switching Response (AV = 2 dB to 26 dB)