SNOSAK7D February   2005  – January 2015 LMH6551

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Typical Application
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: ±5 V
    6. 7.6 Electrical Characteristics: 5 V
    7. 7.7 Electrical Characteristics: 3.3 V
    8. 7.8 Typical Performance Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Typical Fully Differential Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Fully Differential Operation
          2. 9.2.1.2.2 Capacitive Drive
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Single-Ended Input to Differential Output
      3. 9.2.3 Single Supply Operation
      4. 9.2.4 Driving Analog-to-Digital Converters
      5. 9.2.5 Using Transformers
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Power Dissipation
    4. 11.4 ESD Protection
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings (1)(2)(3)

MIN MAX UNIT
Supply Voltage 13.2 V
Common-Mode Input Voltage ±Vs V
Maximum Input Current (pins 1, 2, 7, 8) 30 mA
Maximum Output Current (pins 4, 5) See (2)
Maximum Junction Temperature 150 °C
Storage Temperature, Tstg −65 150 °C
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications, see the Electrical Characteristics tables.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
(3) For Soldering Information, see Product Folder at www.ti.com and SNOA549.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Machine model (MM) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN NOM MAX UNIT
Operating Temperature Range −40 +125 °C
Total Supply Voltage 3 12 V

7.4 Thermal Information

THERMAL METRIC(1) LMH6551 UNIT
D DGK
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance (3) 150 235 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics: ±5 V(1)

Single-ended in differential out, TA= 25°C, G = +1, VS = ±5 V, VCM = 0 V, RF = RG = 365 Ω, RL = 500 Ω; unless specified.
PARAMETER TEST CONDITIONS MIN (6) TYP (5) MAX (6) UNIT
AC PERFORMANCE (DIFFERENTIAL)
SSBW Small Signal −3 dB Bandwidth VOUT = 0.5 VPP 370 MHz
LSBW Large Signal −3 dB Bandwidth VOUT = 2 VPP 340 MHz
Large Signal −3 dB Bandwidth VOUT = 4 VPP 320 MHz
0.1 dB Bandwidth VOUT = 2 VPP 50 MHz
Slew Rate 4-V Step(4) 2400 V/μs
Rise/Fall Time 2-V Step 1.8 ns
Settling Time 2-V Step, 0.05% 18 ns
VCM PIN AC PERFORMANCE (COMMON-MODE FEEDBACK AMPLIFIER)
Common-Mode Small Signal Bandwidth VCMbypass capacitor removed 200 MHz
DISTORTION AND NOISE RESPONSE
HD2 VO = 2 VPP, f = 5 MHz, RL=800 Ω −94 dBc
HD2 VO = 2 VPP, f = 20MHz, RL=800 Ω −85 dBc
HD3 VO = 2 VPP, f = 5 MHz, RL=800 Ω −96 dBc
HD3 VO = 2 VPP, f = 20 MHz, RL=800 Ω −72 dBc
en Input Referred Voltage Noise Freq ≥ 1 MHz 6.0 nV/√Hz
in Input Referred Noise Current Freq ≥ 1 MHz 1.5 pA/√Hz
INPUT CHARACTERISTICS (DIFFERENTIAL)
VOSD Input Offset Voltage Differential Mode, VID = 0, VCM = 0 0.5 ±4 mV
At extreme temperatures ±6
Input Offset Voltage Average Temperature Drift(8)   −0.8 µV/°C
IBI Input Bias Current(7)   -4 0
-10
µA
Input Bias Current Average Temperature Drift(8)   −2.6 nA/°C
Input Bias Difference Difference in Bias currents between the two inputs 0.03 µA
CMRR Common-Mode Rejection Ratio DC, VCM = 0 V, VID = 0 V 72 80 dBc
RIN Input Resistance Differential 5
CIN Input Capacitance Differential 1 pF
CMVR Input Common-Mode Voltage Range CMRR > 53dB +3.1
−4.6
+3.2
−4.7
V
VCMPIN INPUT CHARACTERISTICS (COMMON-MODE FEEDBACK AMPLIFIER)
VOSC Input Offset Voltage Common Mode, VID = 0 0.5 ±5 mV
At extreme temperatures ±8
Input Offset Voltage Average Temperature Drift(8)   8.2 µV/°C
Input Bias Current(7)   −2 μA
VCM CMRR VID = 0 V, 1-V step on VCM pin, measure VOD 70 75 dB
Input Resistance 25
Common-Mode Gain ΔVO,CM/ΔVCM 0.995 0.999 1.005 V/V
OUTPUT PERFORMANCE
Output Voltage Swing Single-Ended, Peak to Peak ±7.38 ±7.8 V
At extreme temperatures ±7.18
Output Common-Mode Voltage Range VID = 0 V, ±3.69 ±3.8 V
IOUT Linear Output Current VOUT = 0V ±50 ±65 mA
ISC Short Circuit Current Output Shorted to Ground
VIN = 3-V Single-Ended(2)l
140 mA
Output Balance Error ΔVOUTCommon Mode /ΔVOUTDIfferential , VOUT = 0.5 Vpp Differential, f = 10 MHz −70 dB
MISCELLANEOUS PERFORMANCE
AVOL Open Loop Gain Differential 70 dB
PSRR Power Supply Rejection Ratio DC, ΔVS = ±1 V 74 90 dB
Supply Current RL = ∞ 11 12.5 14.5 mA
At extreme temperatures 16.5

7.6 Electrical Characteristics: 5 V(1)

Single-ended in differential out, TA= 25°C, G = +1, VS = 5 V, VCM = 2.5 V, RF = RG = 365 Ω, RL = 500 Ω; unless specified.
PARAMETER TEST CONDITIONS MIN (6) TYP (5) MAX (6) UNIT
SSBW Small Signal −3 dB Bandwidth RL = 500 Ω, VOUT = 0.5 VPP 350 MHz
LSBW Large Signal −3 dB Bandwidth RL = 500 Ω, VOUT = 2 VPP 300 MHz
0.1 dB Bandwidth VOUT = 2 VPP 50 MHz
Slew Rate 4-V Step(4) 1800 V/μs
Rise/Fall Time, 10% to 90% 4-V Step 2 ns
Settling Time 4-V Step, 0.05% 17 ns
VCM PIN AC PERFORMANCE (COMMON-MODE FEEDBACK AMPLIFIER)
Common-Mode Small Signal Bandwidth 170 MHz
DISTORTION AND NOISE RESPONSE
HD2 2nd Harmonic Distortion VO = 2 VPP, f = 5 MHz, RL=800 Ω −84 dBc
HD2 VO = 2 VPP, f = 20 MHz, RL=800 Ω −69 dBc
HD3 3rd Harmonic Distortion VO = 2 VPP, f = 5 MHz, RL=800 Ω −93 dBc
HD3 VO = 2 VPP, f = 20 MHz, RL=800 Ω −67 dBc
en Input Referred Noise Voltage Freq ≥ 1 MHz 6.0 nV/√Hz
in Input Referred Noise Current Freq ≥ 1 MHz 1.5 pA/√Hz
INPUT CHARACTERISTICS (DIFFERENTIAL)
VOSD Input Offset Voltage Differential Mode, VID = 0, VCM = 0 0.5 ±4 mV
At extreme temperatures ±6
Input Offset Voltage Average Temperature Drift(8)   −0.8 µV/°C
IBIAS Input Bias Current(7)   −4 0
-10
μA
Input Bias Current Average Temperature Drift(8)   −3 nA/°C
Input Bias Current Difference Difference in Bias currents between the two inputs 0.03 µA
CMRR Common-Mode Rejection Ratio DC, VID = 0 V 70 78 dBc
Input Resistance Differential 5
Input Capacitance Differential 1 pF
VICM Input Common-Mode Range CMRR > 53 dB +3.1
+0.4
+3.2
+0.3
VCMPIN INPUT CHARACTERISTICS (COMMON-MODE FEEDBACK AMPLIFIER)
Input Offset Voltage Common Mode, VID = 0 0.5 ±5 mV
At extreme temperatures ±8
Input Offset Voltage Average Temperature Drift 5.8 µV/°C
Input Bias Current 3 μA
VCM CMRR VID = 0,
1V step on VCM pin, measure VOD
70 75 dB
Input Resistance VCM pin to ground 25
Common-Mode Gain ΔVO,CM/ΔVCM 0.995 0.991 1.005 V/V
OUTPUT PERFORMANCE
VOUT Output Voltage Swing Single-Ended, Peak to Peak, VS= ±2.5 V, VCM= 0 V ±2.4 ±2.8 V
IOUT Linear Output Current VOUT = 0-V Differential ±45 ±60 mA
ISC Output Short Circuit Current Output Shorted to Ground
VIN = 3-V Single-Ended(2)
230 mA
CMVR Output Common-Mode Voltage Range VID = 0, VCMpin = 1.2 V and 3.8 V 3.72
1.23
3.8
1.2
V
Output Balance Error ΔVOUTCommon Mode /ΔVOUTDIfferential, VOUT = 1Vpp Differential, f = 10 MHz −65 dB
MISCELLANEOUS PERFORMANCE
Open Loop Gain DC, Differential 70 dB
PSRR Power Supply Rejection Ratio DC, ΔVS = ±0.5 V 72 88 dB
IS Supply Current RL = ∞ 10 11.5 13.5 mA
At extreme temperatures 15.5

7.7 Electrical Characteristics: 3.3 V(1)

Single-ended in differential out, TA= 25°C, G = +1, VS = 3.3 V, VCM = 1.65 V, RF = RG = 365 Ω, RL = 500 Ω; unless specified.
PARAMETER TEST CONDITIONS MIN (6) TYP (5) MAX (6) UNIT
SSBW Small Signal −3 dB Bandwidth RL = 500 Ω, VOUT = 0.5 VPP 320 MHz
LSBW Large Signal −3 dB Bandwidth RL = 500 Ω, VOUT = 1 VPP 300 MHz
Slew Rate 1-V Step(4) 700 V/μs
Rise/Fall Time, 10% to 90% 1-V Step 2 ns
VCM PIN AC PERFORMANCE (COMMON-MODE FEEDBACK AMPLIFIER)
Common-Mode Small Signal Bandwidth 95 MHz
DISTORTION AND NOISE RESPONSE
HD2 2nd Harmonic Distortion VO = 1 VPP, f = 5 MHz, RL=800 Ω −93 dBc
HD2 VO = 1 VPP, f = 20 MHz, RL=800 Ω −74 dBc
HD3 3rd Harmonic Distortion VO = 1 VPP, f = 5 MHz, RL=800 Ω −85 dBc
HD3 VO = 1 VPP, f = 20 MHz, RL=800 Ω −69 dBc
INPUT CHARACTERISTICS (DIFFERENTIAL)
VOSD Input Offset Voltage Differential Mode, VID = 0, VCM = 0 1 mV
Input Offset Voltage Average Temperature Drift(8)   1.6 µV/°C
IBIAS Input Bias Current(7)   −8 μA
Input Bias Current Average Temperature Drift(8)   9.5 nA/°C
Input Bias Current Difference Difference in Bias currents between the two inputs 0.3 µA
CMRR Common-Mode Rejection Ratio DC, VID = 0 V 78 dBc
Input Resistance Differential 5
Input Capacitance Differential 1 pF
VICM Input Common-Mode Range CMRR > 53 dB +1.5
+0.3
VCMPIN INPUT CHARACTERISTICS (COMMON-MODE FEEDBACK AMPLIFIER)
Input Offset Voltage Common Mode, VID = 0 1 ±5 mV
Input Offset Voltage Average Temperature Drift 18.6 µV/°C
Input Bias Current 3 μA
VCM CMRR VID = 0,
1-V step on VCM pin, measure VOD
60 dB
Input Resistance VCM pin to ground 25
Common-Mode Gain ΔVO,CM/ΔVCM 0.999 V/V
OUTPUT PERFORMANCE
VOUT Output Voltage Swing Single-Ended, Peak to Peak, VS= 3.3 V, VCM= 1.65 V ±0.75 ±0.9 V
IOUT Linear Output Current VOUT = 0-V Differential ±30 ±40 mA
ISC Output Short Circuit Current Output Shorted to Ground
VIN = 2-V Single-Ended(2)
200 mA
CMVR Output Common-Mode Voltage Range VID = 0, VCMpin = 1.2 V and 2.1 V 2.1
1.2
V
Output Balance Error ΔVOUTCommon Mode /ΔVOUTDIfferential, VOUT = 1-Vpp Differential, f = 10 MHz −65 dB
MISCELLANEOUS PERFORMANCE
Open Loop Gain DC, Differential 70 dB
PSRR Power Supply Rejection Ratio DC, ΔVS = ±0.5 V 75 dB
IS Supply Current RL = ∞ 8 mA
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA.
(2) The maximum output current (IOUT) is determined by device power dissipation limitations.
(3) The maximum power dissipation is a function of TJ(MAX), θJA and TA. The maximum allowable power dissipation at any ambient temperature is P D= (TJ(MAX) — TA)/ θJA. All numbers apply for package soldered directly into a 2 layer PC board with zero air flow.
(4) Slew Rate is the average of the rising and falling edges.
(5) Typical numbers are the most likely parametric norm.
(6) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using Statistical Quality Control (SQC) methods.
(7) Negative input current implies current flowing out of the device.
(8) Drift determined by dividing the change in parameter at temperature extremes by the total temperature change.

7.8 Typical Performance Characteristics

(TA = 25°C, VS = ±5 V, RL = 500 Ω, RF = RG = 365 Ω; Unless Specified).
20133214.gifFigure 1. Frequency Response vs Supply Voltage
20133216.gifFigure 3. Frequency Response vs VOUT
20133226.gifFigure 5. 1 VPP Pulse Response Single-Ended Input
20133235.gifFigure 7. Large Signal Pulse Response
20133228.gifFigure 9. Distortion vs Frequency
20133236.gifFigure 11. Distortion vs Frequency
20133237.gifFigure 13. Distortion vs Supply Voltage (Single Supply)
20133231.gifFigure 15. Minimum VOUT vs IOUT
20133218.gifFigure 17. Closed-Loop Output Impedance
20133219.gifFigure 19. PSRR
20133233.gifFigure 21. CMRR
20133215.gifFigure 2. Frequency Response
20133223.gifFigure 4. Suggested ROUT vs Cap Load
20133227.gifFigure 6. 2 VPP Pulse Response Single-Ended Input
20133224.gifFigure 8. Output Common-Mode Pulse Response
20133229.gifFigure 10. Distortion vs Frequency
20133238.gifFigure 12. Distortion vs Supply Voltage (Split Supplies)
20133230.gifFigure 14. Maximum VOUT vs IOUT
20133217.gifFigure 16. Closed-Loop Output Impedance
20133239.gifFigure 18. Closed-Loop Output Impedance
20133220.gifFigure 20. PSRR
20133213.gifFigure 22. Balance Error