SNOS986E December   2001  – July 2014 LMH6622

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 ±6 V Electrical Characteristics
    6. 6.6 ±2.5 V Electrical Characteristics
    7. 6.7 Typical Performance Characteristics
  7. Parameter Measurement Information
    1. 7.1 Test Circuits
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 DSL Receive Channel Applications
    2. 9.2 Receive Channel Noise Calculation
    3. 9.3 Differential Analog-to-Digital Driver
    4. 9.4 Typical Application
      1. 9.4.1 Design Requirements
      2. 9.4.2 Detailed Design Procedure
      3. 9.4.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Driving Capacitive Load
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Circuit Layout Considerations
    2. 11.2 Layout Examples
      1. 11.2.1 SOIC Layout Example
      2. 11.2.2 VSSOP Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Trademarks
    2. 12.2 Electrostatic Discharge Caution
    3. 12.3 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings(1)(1)

MIN MAX UNIT
VIN Differential ±1.2 V
Supply Voltage (V+ – V) 13.2 V
Voltage at Input Pins V+ +0.5, V −0.5 V
SOLDERING INFORMATION
 Infrared or Convection (20 sec) 235 °C
 Wave Soldering (10 sec) 260 °C
Junction Temperature (4) +150 °C
(1) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range −65° +150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 2000(2) V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) 200(2)
(1) JEDEC document JEP155 states that 2000-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 200-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions(1)

MIN MAX UNIT
Supply Voltage (V+– V) ±2.25 ±6 V
Temperature Range(3)(4) −40 +85 °C
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics.

6.4 Thermal Information

THERMAL METRIC(1) LMH6622 LMH6622 UNIT
Package D Package DGK
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance(4) 166° 211° °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 ±6 V Electrical Characteristics

Unless otherwise specified, TJ = 25°C, V+ = 6 V, V = −6 V, VCM = 0 V, AV = +2, RF = 500 Ω, RL = 100 Ω. Some limits apply at the temperature extremes as noted in the table.
PARAMETER TEST CONDITIONS TEMPERATURE
EXTREMES
ROOM
TEMPERATURE
UNIT
MIN(6) TYP(5) MAX(6) MIN(6) TYP(5) MAX(6)
DYNAMIC PERFORMANCE
fCL −3dB BW VO = 200 mVPP 160 MHz
BW0.1dB 0.1dB Gain Flatness VO = 20 0mVPP 30 MHz
SR Slew Rate(8) VO = 2 VPP 85 V/μs
TS Settling Time VO = 2 VPP to ±0.1% 40 ns
VO = 2 VPP to ±1.0% 35
Tr Rise Time VO = 0.2 V Step, 10% to 90% 2.3 ns
Tf Fall Time VO = 0.2 V Step, 10% to 90% 2.3 ns
DISTORTION and NOISE RESPONSE
en Input Referred Voltage Noise f = 100 kHz 1.6 nV/√Hz
in Input Referred Current Noise f = 100 kHz 1.5 pA/√Hz
DG Differential Gain RL = 150 Ω, RF = 470 Ω, NTSC 0.03%
DP Differential Phase RL = 150 Ω, RF = 470 Ω, NTSC 0.03 deg
HD2 2nd Harmonic Distortion fc = 1 MHz, VO = 2 VPP,
RL = 100 Ω
−90 dBc
fc = 1 MHz, VO = 2 VPP,
RL = 500 Ω
−100
HD3 3rd Harmonic Distortion fc = 1 MHz, VO = 2 VPP,
RL = 100 Ω
−94 dBc
fc = 1 MHz, VO = 2 VPP,
RL = 500 Ω
−100
MTPR Upstream VO = 0.6 VRMS,
26 kHz to 132 kHz
(see Figure 33)
−78 dBc
Downstream VO = 0.6 VRMS,
144 kHz to 1.1 MHz
(see Figure 33)
−70
INPUT CHARACTERISTICS
VOS Input Offset Voltage VCM = 0 V −2 +2 −1.2 +0.2 +1.2 mV
TC VOS Input Offset Average Drift VCM = 0 V(7) −2.5 μV/°C
IOS Input Offset Current VCM = 0V −1.5 1.5 −1 −0.04 1 μA
IB Input Bias Current VCM = 0V 15 4.7 10 μA
RIN Input Resistance Common Mode 17
Differential Mode 12
CIN Input Capacitance Common Mode 0.9 pF
Differential Mode 1.0 pF
CMVR Input Common Mode Voltage Range CMRR ≥ 60dB −4.75 −4.5 V
5.5 +5.7
CMRR Common-Mode Rejection Ratio Input Referred,
VCM = −4.2 V to +5.2 V
75 80 100 dB
TRANSFER CHARACTERISTICS
AVOL Large Signal Voltage Gain VO = 4 VPP 70 74 83 dB
Xt Crosstalk f = 1 MHz −75 dB
OUTPUT CHARACTERISTICS
VO Output Swing No Load, Positive Swing 4.6 4.8 5.2 V
No Load, Negative Swing −4.4 −5.0 −4.6
RL = 100 Ω, Positive Swing 3.8 4.0 4.6
RL = 100 Ω, Negative Swing −3.8 −4.6 −4
RO Output Impedance f = 1 MHz 0.08 Ω
ISC Output Short Circuit Current Sourcing to Ground
ΔVIN = 200 mV(3),(9)
100 135 mA
Sinking to Ground
ΔVIN = −200 mV(3),(9)
100 130
IOUT Output Current Sourcing, VO = +4.3 V
Sinking, VO = −4.3 V
90 mA
POWER SUPPLY
+PSRR Positive Power Supply
Rejection Ratio
Input Referred,
VS = +5 V to +6 V
74 80 95 dB
−PSRR Negative Power Supply Rejection Ratio Input Referred,
VS = −5 V to −6 V
69 75 90
IS Supply Current (per amplifier) No Load 6.5 4.3 6 mA

6.6 ±2.5 V Electrical Characteristics

Unless otherwise specified, TJ = 25°C, V+ = 2.5 V, V− = −2.5 V, VCM = 0 V, AV = +2, RF = 500 Ω, RL = 100 Ω. Some limits apply at the temperature extremes as noted in the table.
PARAMETER TEST CONDITIONS TEMPERATURE
EXTREMES
ROOM
TEMPERATURE
UNIT
MIN(6) TYP(5) MAX(6) MIN(6) TYP(5) MAX(6)
DYNAMIC PERFORMANCE
fCL −3 dB BW VO = 200 mVPP 150 MHz
BW0.1dB 0.1dB Gain Flatness VO = 200 mVPP 20 MHz
SR Slew Rate (8) VO = 2 VPP 80 V/μs
TS Settling Time VO = 2 VPP to ±0.1% 45 ns
VO = 2 VPP to ±1.0% 40
Tr Rise Time VO = 0.2 V Step, 10% to 90% 2.5 ns
Tf Fall Time VO = 0.2 V Step, 10% to 90% 2.5 ns
DISTORTION and NOISE RESPONSE
en Input Referred Voltage Noise f = 100 kHz 1.7 nV/√Hz
in Input Referred Current Noise f = 100 kHz 1.5 pA/√Hz
HD2 2nd Harmonic Distortion fc = 1 MHz, VO = 2VPP,
RL = 100 Ω
−88 dBc
fc = 1 MHz, VO = 2VPP,
RL = 500 Ω
−98
HD3 3rd Harmonic Distortion fc = 1 MHz, VO = 2 VPP, RL = 100 Ω −92 dBc
fc = 1 MHz, VO = 2 VPP, RL = 500 Ω −100
MTPR Upstream VO = 0.4VRMS, 26kHz to 132kHz
(see Figure 33)
−76 dBc
Downstream VO = 0.4 VRMS,
144 kHz to 1.1 MHz
(see Figure 33)
−68
INPUT CHARACTERISTICS
VOS Input Offset Voltage VCM = 0 V −2.3 +2.3 −1.5 +0.3 +1.5 mV
TC VOS Input Offset Average Drift VCM = 0 V(7) −2.5 μV/°C
IOS Input Offset Current VCM = 0 V −2.5 2.5 −1.5 +0.01 1.5 μA
IB Input Bias Current VCM = 0 V 15 4.6 10 μA
RIN Input Resistance Common Mode 17
Differential Mode 12
CIN Input Capacitance Common Mode 0.9 pF
Differential Mode 1.0 pF
CMVR Input Common Mode Voltage Range CMRR ≥ 60dB −1.25 −1 V
2 +2.2
CMRR Common Mode Rejection Ratio Input Referred,
VCM = −0.7 V to +1.7 V
75 80 100 dB
TRANSFER CHARACTERISTICS
AVOL Large Signal Voltage Gain VO = 1 VPP 74 82 dB
Xt Crosstalk f = 1 MHz −75 dB
OUTPUT CHARACTERISTICS
VO Output Swing No Load, Positive Swing 1.2 1.4 1.7 V
No Load, Negative Swing −1 −1.5 −1.2
RL = 100 Ω, Positive Swing 1 1.2 1.5
RL = 100 Ω, Negative Swing −0.9 −1.4 −1.1
RO Output Impedance f = 1 MHz 0.1 Ω
ISC Output Short Circuit Current Sourcing to Ground
ΔVIN = 200 mV(3)(9)
100 137 mA
Sinking to Ground
ΔVIN = −20 0mV(3)(9)
100 134
IOUT Output Current Sourcing, VO = +0.8 V
Sinking, VO = −0.8 V
90 mA
POWER SUPPLY
+PSRR Positive Power Supply Rejection Ratio Input Referred,
VS = +2.5 V to +3 V
72 78 93 dB
−PSRR Negative Power Supply Rejection Ratio Input Referred,
VS = −2.5 V to −3 V
70 75 88 dB
IS Supply Current (per amplifier) No Load 6.4 4.1 5.8 mA
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics.
(2) Human body model, 1.5 kΩ in series with 100 pF. Machine model, 0 Ω in series with 200 pF.
(3) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.
(4) The maximum power dissipation is a function of TJ(MAX), RθJA and TA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) − TA)/RθJA. All numbers apply for packages soldered directly onto a PC board.
(5) Typical values represent the most likely parametric norm.
(6) All limits are specified by testing or statistical analysis.
(7) Offset voltage average drift is determined by dividing the change in VOS at temperature extremes into the total temperature change.
(8) Slew rate is the slowest of the rising and falling slew rates.
(9) Short circuit test is a momentary test. Output short circuit duration is infinite for VS ≤ ±2.5 V, at room temperature and below. For VS > ±2.5 V, allowable short circuit duration is 1.5ms.

6.7 Typical Performance Characteristics

20029224.gif
Figure 1. Current and Voltage Noise vs. Frequency
20029202.gif
Figure 3. Frequency Response vs. Input Signal Level
20029246.gif
Figure 5. Inverting Amplifier Frequency Response
20029205.gif
Figure 7. Open Loop Gain and Phase Response
20029204.gif
Figure 9. PSRR vs. Frequency
20029248.gif
Figure 11. Positive Output Swing vs. Source Current
20029207.gif
Figure 13. Non-Inverting Small Signal Pulse Response
VS = ±2.5 V, RL = 100 Ω, AV = +2, RF = 500 Ω
20029208.gif
Figure 15. Non-Inverting Large Signal Pulse Response
VS = ±2.5 V, RL = 100 Ω, AV = +2, RF = 500 Ω
20029212.gif
Figure 17. Harmonic Distortion vs. Input Signal Level
20029214.gif
Figure 19. Harmonic Distortion vs. Frequency
20029216.gif
Figure 21. Harmonic Distortion vs. Input Signal Level
20029218.gif
Figure 23. Harmonic Distortion vs. Input Frequency
20029256.gif
Figure 25. Full Rate ADSL (DMT) Upstream MTPR
@ VS = ±2.5 V
20029257.gif
Figure 27. Full Rate ADSL (DMT) Upstream MTPR
@ VS = ±6 V
20029225.gif
Figure 2. Current and Voltage Noise vs. Frequency
20029203.gif
Figure 4. Frequency Response vs. Input Signal Level
20029247.gif
Figure 6. Non-Inverting Amplifier Frequency Response
20029201.gif
Figure 8. Crosstalk vs. Frequency
20029206.gif
Figure 10. CMRR vs. Frequency
20029249.gif
Figure 12. Negative Output Swing vs. Sink Current
20029209.gif
Figure 14. Non-Inverting Small Signal Pulse Response
VS = ±6 V, RL = 100 Ω, AV = +2, RF = 500 Ω
20029210.gif
Figure 16. Non-Inverting Large Signal Pulse Response
VS = ±6 V, RL = 100 Ω, AV = +2, RF = 500 Ω
20029213.gif
Figure 18. Harmonic Distortion vs. Input Signal Level
20029215.gif
Figure 20. Harmonic Distortion vs. Frequency
20029217.gif
Figure 22. Harmonic Distortion vs. input Signal Level
20029219.gif
Figure 24. Harmonic Distortion vs. Input Frequency
20029258.gif
Figure 26. Full Rate ADSL (DMT) Downstream MTPR
@ VS = ±2.5 V
20029259.gif
Figure 28. Full Rate ADSL (DMT) Downstream MTPR @ VS = ±6 V