ZHCSHU9K September   2011  – December 2023 LMK03806

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 描述
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Differential Voltage Measurement Terminology
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Features Description
      1. 7.3.1 Serial MICROWIRE Timing Diagram and Terminology
      2. 7.3.2 Crystal Support With Buffered Outputs
      3. 7.3.3 Integrated Loop Filter Poles
      4. 7.3.4 Integrated VCO
      5. 7.3.5 Clock Distribution
        1. 7.3.5.1 CLKout DIvider
        2. 7.3.5.2 Programmable Output Type
        3. 7.3.5.3 Clock Output Synchronization
      6. 7.3.6 Default Start-Up Clocks
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
      1. 7.5.1 General Information
        1. 7.5.1.1 Special Programming Case for R0 to R5 for CLKoutX_Y_DIV > 25
        2. 7.5.1.2 Recommended Initial Programming Sequence
        3. 7.5.1.3 READBACK
          1. 7.5.1.3.1 Readback Example
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Crystal Interface
      2. 8.1.2 Driving OSCin Pins With a Single-Ended Source
      3. 8.1.3 Driving OSCin Pins With a Differential Source
      4. 8.1.4 Frequency Planning With the LMK03806
      5. 8.1.5 Configuring the PLL
        1. 8.1.5.1 Example PLL Configuration
      6. 8.1.6 Digital Lock Detect
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Device Selection
          1. 8.2.2.1.1 Clock Architect
          2. 8.2.2.1.2 Clock Design Tool
          3. 8.2.2.1.3 Calculation Using LCM
        2. 8.2.2.2 Device Configuration
        3. 8.2.2.3 PLL Loop Filter Design
          1. 8.2.2.3.1 Example Loop Filter Design
        4. 8.2.2.4 Other Device Specific Configuration
          1. 8.2.2.4.1 Digital Lock Detect
        5. 8.2.2.5 Device Programming
      3. 8.2.3 Application Curves
    3. 8.3 System Examples
      1. 8.3.1 System Level Diagram
    4. 8.4 Best Design Practices
      1. 8.4.1 LVCMOS Complementary vs. Non-Complementary Operation
      2. 8.4.2 LVPECL Outputs
      3. 8.4.3 Sharing MICROWIRE (SPI) Lines
      4. 8.4.4 SYNC Pin
      5. 8.4.5 CLKout Vcc Pins
    5. 8.5 Power Supply Recommendations
      1. 8.5.1 Current Consumption and Power Dissipation Calculations
    6. 8.6 Layout
      1. 8.6.1 Layout Guidelines
      2. 8.6.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 Trademarks
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10Register Maps
    1. 10.1  Default Device Register Settings After Power On Reset
    2. 10.2  Register R0 TO R5
      1. 10.2.1 CLKoutX_Y_PD, Powerdown CLKoutX_Y Output Path
      2. 10.2.2 RESET
      3. 10.2.3 POWERDOWN
      4. 10.2.4 CLKoutX_Y_DIV, Clock Output Divide
    3. 10.3  Registers R6 TO R8
      1. 10.3.1 CLKoutX_TYPE
    4. 10.4  REGISTER R9
    5. 10.5  REGISTER R10
      1. 10.5.1 OSCout1_TYPE, LVPECL Output Amplitude Control
      2. 10.5.2 OSCout0_TYPE
      3. 10.5.3 EN_OSCoutX, OSCout Output Enable
      4. 10.5.4 OSCoutX_MUX, Clock Output Mux
      5. 10.5.5 OSCout_DIV, Oscillator Output Divide
    6. 10.6  REGISTER R11
      1. 10.6.1 NO_SYNC_CLKoutX_Y
      2. 10.6.2 SYNC_POL_INV
      3. 10.6.3 SYNC_TYPE
      4. 10.6.4 EN_PLL_XTAL
    7. 10.7  REGISTER R12
      1. 10.7.1 LD_MUX
      2. 10.7.2 LD_TYPE
      3. 10.7.3 SYNC_PLL_DLD
    8. 10.8  REGISTER R13
      1. 10.8.1 READBACK_TYPE
      2. 10.8.2 GPout0
    9. 10.9  REGISTER 14
      1. 10.9.1 GPout1
    10. 10.10 REGISTER 16
    11. 10.11 REGISTER 24
      1. 10.11.1 PLL_C4_LF, PLL Integrated Loop Filter Component
      2. 10.11.2 PLL_C3_LF, PLL Integrated Loop Filter Component
      3. 10.11.3 PLL_R4_LF, PLL Integrated Loop Filter Component
      4. 10.11.4 PLL_R3_LF, PLL Integrated Loop Filter Component
    12. 10.12 REGISTER 26
      1. 10.12.1 EN_PLL_REF_2X, PLL Reference Frequency Doubler
      2. 10.12.2 PLL_CP_GAIN, PLL Charge Pump Current
      3. 10.12.3 PLL_DLD_CNT
    13. 10.13 REGISTER 28
      1. 10.13.1 PLL_R, PLL R Divider
    14. 10.14 REGISTER 29
      1. 10.14.1 OSCin_FREQ, PLL Oscillator Input Frequency Register
      2. 10.14.2 PLL_N_CAL, PLL N Calibration Divider
    15. 10.15 REGISTER 30
      1. 10.15.1 PLL_P, PLL N Prescaler Divider
      2. 10.15.2 PLL_N, PLL N Divider
    16. 10.16 REGISTER 31
      1. 10.16.1 READBACK_ADDR
      2. 10.16.2 uWire_LOCK
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Current Consumption and Power Dissipation Calculations

From Table 8-1 the current consumption can be calculated for any configuration.

For example, the current for the entire device with 1 LVDS (CLKout0) and 1 LVPECL 1.6 Vpp with 240-Ω emitter resistors (CLKout1) output active with a clock output divide = 1, and no other features enabled can be calculated by adding up the following blocks: core current, base clock distribution, clock output group, clock divider, one LVDS output buffer current, and one LVPECL output buffer current. There will also be one LVPECL output drawing emitter current, which means some of the power from the current draw of the device is dissipated in the external emitter resistors which doesn't add to the thermal power dissipation budget for the device. In addition to emitter resistor power, power dissipated in the load for LVDS/LVPECL do not contribute to the thermal power dissipation budget for the device.

For total current consumption of the device, add up the significant functional blocks. In this example, 212.9 mA =

  • 122 mA (core current)
  • 17.3 mA (base clock distribution)
  • 2.8 mA (CLKout group for two outputs)
  • 25.5 mA (CLKout0 ans CLKout1 divider)
  • 14.3 mA (LVDS buffer)
  • 31 mA (LVPECL 1.6 Vpp buffer with a 240-Ω emitter resistors)

Once total current consumption has been calculated, power dissipated by the device can be calculated. The power dissipation of the device is equation to the total current entering the device multiplied by the voltage at the device minus the power dissipated in any emitter resistors connected to any of the LVPECL outputs or any other external load power dissipation. Continuing the above example which has 212.9 mA total Icc and one output with 240-Ω emitter resistors and one LVDS output. Total IC power = 666 mW = 3.3 V × 212.9 mA – 35 mW – 1.5 mW.

Table 8-1 Typical Current Consumption for Selected Functional Blocks
(TA = 25°C, VCC = 3.3 V)
BLOCKCONDITIONTYPICAL ICC
(mA)
POWER DISSIPATED IN DEVICE
(mW)(2)
POWER DISSIPATED EXTERNALLY (mW)(3)
CORE AND FUNCTIONAL BLOCKS
CoreInternal VCO Locked122403-
Base Clock DistributionAt least 1 CLKoutX_Y_PD = 017.357.1-
CLKout GroupEach CLKout group
(CLKout0/1 and CLKout10/11, CLKout2/3 and CLKout4/5, CLKout6/7 and CLKout8/9)
2.89.2-
Clock DividerDivide < 2525.584.1-
Divide >= 2529.697.7-
SYNC AssertedWhile SYNC is asserted, this extra current is drawn1.75.6-
Crystal ModeCrystal Oscillator Buffer1.85.9-
OSCin DoublerEN_OSCin_2X = 12.89.2-
CLOCK OUTPUT BUFFERS
LVDS100-Ω differential termination14.345.71.5
LVPECL
(1)
LVPECL 2.0 Vpp, AC coupled using 240-Ω emitter resistors3270.635
LVPECL 1.6 Vpp, AC coupled using 240-Ω emitter resistors3167.335
LVPECL 1.6 Vpp, AC coupled using 120-Ω emitter resistors4691.860
LVPECL 1.2 Vpp, AC coupled using 240-Ω emitter resistors305940
LVPECL 0.7 Vpp, AC coupled using 240-Ω emitter resistors2955.740
LVCMOSLVCMOS Pair (CLKoutX_Y_TYPE
= 6 to 10)
CL = 5 pF
3 MHz2479.2-
30 MHz26.587.5-
150 MHz36.5120.5-
LVCMOS Single (CLKoutX_Y_TYPE
= 11 to 13)
CL = 5 pF
3 MHz1549.5-
30 MHz1652.8-
150 MHz21.571-
Power is dissipated externally in LVPECL emitter resistors. The externally dissipated power is calculated as twice the DC voltage level of one LVPECL clock output pin squared over the emitter resistance. That is to say power dissipated in emitter resistors = 2 × Vem2 / Rem.
Assuming θJA = 15°C/W, the total power dissipated on chip must be less than (125°C – 85°C) / 16°C/W = 2.5 W to guarantee a junction temperature is less than 125°C.
Worst case power dissipation can be estimated by multiplying typical power dissipation with a factor of 1.15.