ZHCSQ64 October   2023 LMK04714-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 修订历史记录
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 时序要求
    7. 6.7 时序图
    8. 6.8 典型特性
  8. 参数测量信息
    1. 7.1 电荷泵电流规格定义
      1. 7.1.1 电荷泵输出电流幅度变化与电荷泵输出电压间的关系
      2. 7.1.2 电荷泵灌电流与电荷泵输出拉电流失配间的关系
      3. 7.1.3 电荷泵输出电流幅度变化与环境温度间的关系
    2. 7.2 差分电压测量术语
  9. 详细说明
    1. 8.1 概述
      1. 8.1.1 与 LMK04832 的区别
        1. 8.1.1.1 抖动清除
        2. 8.1.1.2 JEDEC JESD204B/C 支持
      2. 8.1.2 时钟输入
        1. 8.1.2.1 PLL1 的输入
        2. 8.1.2.2 PLL2 的输入
        3. 8.1.2.3 使用时钟分配模式时的输入
      3. 8.1.3 PLL1
        1. 8.1.3.1 频率保持
        2. 8.1.3.2 用于 PLL1 的外部 VCXO
      4. 8.1.4 PLL2
        1. 8.1.4.1 PLL2 的内部 VCO
        2. 8.1.4.2 外部 VCO 模式
      5. 8.1.5 时钟分配
        1. 8.1.5.1 时钟分频器
        2. 8.1.5.2 高性能分频器旁路模式
        3. 8.1.5.3 SYSREF 时钟分频器
        4. 8.1.5.4 器件时钟延迟
        5. 8.1.5.5 动态数字延迟
        6. 8.1.5.6 SYSREF 延迟:全局和本地
        7. 8.1.5.7 可编程输出格式
        8. 8.1.5.8 时钟输出同步
      6. 8.1.6 0 延迟
      7. 8.1.7 状态引脚
    2. 8.2 功能方框图
    3. 8.3 特性说明
      1. 8.3.1 同步 PLL R 分频器
        1. 8.3.1.1 PLL1 R 分频器同步
        2. 8.3.1.2 PLL2 R 分频器同步
      2. 8.3.2 SYNC/SYSREF
      3. 8.3.3 JEDEC JESD204B/C
        1. 8.3.3.1 如何启用 SYSREF
          1. 8.3.3.1.1 SYSREF 设置示例
          2. 8.3.3.1.2 SYSREF_CLR
        2. 8.3.3.2 SYSREF 模式
          1. 8.3.3.2.1 SYSREF 脉冲发生器
          2. 8.3.3.2.2 连续 SYSREF
          3. 8.3.3.2.3 SYSREF 请求
      4. 8.3.4 数字延迟
        1. 8.3.4.1 固定数字延迟
        2. 8.3.4.2 动态数字延迟
        3. 8.3.4.3 单个和多个动态数字延迟示例
      5. 8.3.5 SYSREF 与器件时钟对齐
      6. 8.3.6 输入时钟切换
        1. 8.3.6.1 输入时钟切换 - 手动模式
        2. 8.3.6.2 输入时钟切换 - 引脚选择模式
        3. 8.3.6.3 输入时钟切换 - 自动模式
      7. 8.3.7 数字锁定检测 (DLD)
        1. 8.3.7.1 计算数字锁定检测频率精度
      8. 8.3.8 保持
        1. 8.3.8.1 启用保持
          1. 8.3.8.1.1 固定(手动)CPout1 保持模式
          2. 8.3.8.1.2 跟踪 CPout1 保持模式
        2. 8.3.8.2 在保持期间
        3. 8.3.8.3 退出保持
        4. 8.3.8.4 保持频率精度和 DAC 性能
      9. 8.3.9 PLL2 环路滤波器
    4. 8.4 器件功能模式
      1. 8.4.1 双 PLL
        1. 8.4.1.1 双环路
        2. 8.4.1.2 具有级联 0 延迟的双环路
        3. 8.4.1.3 具有嵌套 0 延迟的双环路
      2. 8.4.2 单个 PLL
        1. 8.4.2.1 PLL2 单环路
          1. 8.4.2.1.1 具有 0 延迟的 PLL2 单环路
        2. 8.4.2.2 具有外部 VCO 的 PLL2
      3. 8.4.3 分配模式
    5. 8.5 编程
      1. 8.5.1 建议编程序列
    6. 8.6 寄存器映射
      1. 8.6.1 用于器件编程的寄存器映射
      2. 8.6.2 器件寄存器说明
        1. 8.6.2.1 系统功能
          1. 8.6.2.1.1 RESET、SPI_3WIRE_DIS
          2. 8.6.2.1.2 POWERDOWN
          3. 8.6.2.1.3 ID_DEVICE_TYPE
          4. 8.6.2.1.4 ID_PROD
          5. 8.6.2.1.5 ID_MASKREV
          6. 8.6.2.1.6 ID_VNDR
        2. 8.6.2.2 (0x100 至 0x137)器件时钟和 SYSREF 时钟输出控制
          1. 8.6.2.2.1 DCLKX_Y_DIV
          2. 8.6.2.2.2 DCLKX_Y_DDLY
          3. 8.6.2.2.3 CLKoutX_Y_PD、CLKoutX_Y_ODL、CLKoutX_Y_IDL、DCLKX_Y_DDLY_PD、DCLKX_Y_DDLY[9:8]、DCLKX_Y_DIV[9:8]
          4. 8.6.2.2.4 CLKoutX_SRC_MUX、DCLKX_Y_PD、DCLKX_Y_BYP、DCLKX_Y_DCC、DCLKX_Y_POL、DCLKX_Y_HS
          5. 8.6.2.2.5 CLKoutY_SRC_MUX、SCLKX_Y_PD、SCLKX_Y_DIS_MODE、SCLKX_Y_POL、SCLKX_Y_HS
          6. 8.6.2.2.6 SCLKX_Y_ADLY_EN、SCLKX_Y_ADLY
          7. 8.6.2.2.7 SCLKX_Y_DDLY
          8. 8.6.2.2.8 CLKoutY_FMT、CLKoutX_FMT
        3. 8.6.2.3 SYSREF、SYNC 和器件配置
          1. 8.6.2.3.1  VCO_MUX、OSCout_MUX、OSCout_FMT
          2. 8.6.2.3.2  SYSREF_REQ_EN、SYNC_BYPASS、SYSREF_MUX
          3. 8.6.2.3.3  SYSREF_DIV
          4. 8.6.2.3.4  SYSREF_DDLY
          5. 8.6.2.3.5  SYSREF_PULSE_CNT
          6. 8.6.2.3.6  PLL2_RCLK_MUX、PLL2_NCLK_MUX、PLL1_NCLK_MUX、FB_MUX、FB_MUX_EN
          7. 8.6.2.3.7  PLL1_PD、VCO_LDO_PD、VCO_PD、OSCin_PD、SYSREF_GBL_PD、SYSREF_PD、SYSREF_DDLY_PD、SYSREF_PLSR_PD
          8. 8.6.2.3.8  DDLYdSYSREF_EN、DDLYdX_EN
          9. 8.6.2.3.9  DDLYd_STEP_CNT
          10. 8.6.2.3.10 SYSREF_CLR、SYNC_1SHOT_EN、SYNC_POL、SYNC_EN、SYNC_PLL2_DLD、SYNC_PLL1_DLD、SYNC_MODE
          11. 8.6.2.3.11 SYNC_DISSYSREF、SYNC_DISX
          12. 8.6.2.3.12 PLL1R_SYNC_EN、PLL1R_SYNC_SRC、PLL2R_SYNC_EN、FIN0_DIV2_EN、FIN0_INPUT_TYPE
        4. 8.6.2.4 (0x146 - 0x149) CLKIN 控制
          1. 8.6.2.4.1 CLKin_SEL_PIN_EN、CLKin_SEL_PIN_POL、CLKin2_EN、CLKin1_EN、CLKin0_EN、CLKin2_TYPE、CLKin1_TYPE、CLKin0_TYPE
          2. 8.6.2.4.2 CLKin_SEL_AUTO_REVERT_EN、CLKin_SEL_AUTO_EN、CLKin_SEL_MANUAL、CLKin1_DEMUX、CLKin0_DEMUX
          3. 8.6.2.4.3 CLKin_SEL0_MUX、CLKin_SEL0_TYPE
          4. 8.6.2.4.4 SDIO_RDBK_TYPE、CLKin_SEL1_MUX、CLKin_SEL1_TYPE
        5. 8.6.2.5 RESET_MUX、RESET_TYPE
        6. 8.6.2.6 (0x14B - 0x152) 保持
          1. 8.6.2.6.1 LOS_TIMEOUT、LOS_EN、TRACK_EN、HOLDOVER_FORCE、MAN_DAC_EN、MAN_DAC[9:8]
          2. 8.6.2.6.2 MAN_DAC
          3. 8.6.2.6.3 DAC_TRIP_LOW
          4. 8.6.2.6.4 DAC_CLK_MULT、DAC_TRIP_HIGH
          5. 8.6.2.6.5 DAC_CLK_CNTR
          6. 8.6.2.6.6 CLKin_OVERRIDE、HOLDOVER_EXIT_MODE、HOLDOVER_PLL1_DET、LOS_EXTERNAL_INPUT、HOLDOVER_VTUNE_DET、CLKin_SWITCH_CP_TRI、HOLDOVER_EN
          7. 8.6.2.6.7 HOLDOVER_DLD_CNT
        7. 8.6.2.7 (0x153 - 0x15F) PLL1 配置
          1. 8.6.2.7.1 CLKin0_R
          2. 8.6.2.7.2 CLKin1_R
          3. 8.6.2.7.3 CLKin2_R
          4. 8.6.2.7.4 PLL1_N
          5. 8.6.2.7.5 PLL1_WND_SIZE、PLL1_CP_TRI、PLL1_CP_POL、PLL1_CP_GAIN
          6. 8.6.2.7.6 PLL1_DLD_CNT
          7. 8.6.2.7.7 HOLDOVER_EXIT_NADJ
          8. 8.6.2.7.8 PLL1_LD_MUX, PLL1_LD_TYPE
        8. 8.6.2.8 (0x160 - 0x16E) PLL2 配置
          1. 8.6.2.8.1 PLL2_R
          2. 8.6.2.8.2 PLL2_P、OSCin_FREQ、PLL2_REF_2X_EN
          3. 8.6.2.8.3 PLL2_N_CAL
          4. 8.6.2.8.4 PLL2_N
          5. 8.6.2.8.5 PLL2_WND_SIZE、PLL2_CP_GAIN、PLL2_CP_POL、PLL2_CP_TRI
          6. 8.6.2.8.6 PLL2_DLD_CNT
          7. 8.6.2.8.7 PLL2_LD_MUX、PLL2_LD_TYPE
        9. 8.6.2.9 (0x16F - 0x555) 其他寄存器
          1. 8.6.2.9.1 PLL2_PRE_PD、PLL2_PD、FIN0_PD
          2. 8.6.2.9.2 PLL1R_RST
          3. 8.6.2.9.3 CLR_PLL1_LD_LOST、CLR_PLL2_LD_LOST
          4. 8.6.2.9.4 RB_PLL1_LD_LOST、RB_PLL1_LD、RB_PLL2_LD_LOST、RB_PLL2_LD
          5. 8.6.2.9.5 RB_DAC_VALUE (MSB)、RB_CLKinX_SEL、RB_CLKinX_LOS
          6. 8.6.2.9.6 RB_DAC_VALUE
          7. 8.6.2.9.7 RB_HOLDOVER
          8. 8.6.2.9.8 SPI_LOCK
  10. 应用和实施
    1. 9.1 应用信息
      1. 9.1.1 处理未使用的引脚
      2. 9.1.2 频率规划和杂散最小化
      3. 9.1.3 数字锁定检测频率精度
        1. 9.1.3.1 最小锁定时间计算示例
      4. 9.1.4 驱动 CLKIN 和 OSCIN 输入
        1. 9.1.4.1 使用差分源驱动 CLKIN 和 OSCIN 引脚
        2. 9.1.4.2 使用单端源驱动 CLKIN 引脚
      5. 9.1.5 用于实现最佳相位噪声性能的 OSCin 倍频器
      6. 9.1.6 端接和使用时钟输出驱动器
        1. 9.1.6.1 直流耦合差分操作的端接
        2. 9.1.6.2 交流耦合差分操作的端接
        3. 9.1.6.3 单端操作的端接
    2. 9.2 典型应用
      1. 9.2.1 设计要求
      2. 9.2.2 详细设计过程
        1. 9.2.2.1 器件选择
        2. 9.2.2.2 器件配置和仿真
        3. 9.2.2.3 器件设置
    3. 9.3 系统示例
      1. 9.3.1 系统级方框图
    4. 9.4 电源相关建议
    5. 9.5 布局
      1. 9.5.1 热管理
      2. 9.5.2 布局指南
      3. 9.5.3 布局示例
  11. 10器件和文档支持
    1. 10.1 器件支持
      1. 10.1.1 开发支持
        1. 10.1.1.1 时钟树架构
        2. 10.1.1.2 PLLatinum 仿真
        3. 10.1.1.3 TICS Pro
    2. 10.2 文档支持
      1. 10.2.1 相关文档
    3. 10.3 接收文档更新通知
    4. 10.4 支持资源
    5. 10.5 商标
    6. 10.6 静电放电警告
    7. 10.7 术语表
  12. 11机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

SYNC/SYSREF

SYNC 和 SYSREF 信号共用同一个 SYNC/SYSREF 时钟分配路径。为了正确使用 JESD204B/C 的 SYNC 和/或 SYSREF,务必要了解 SYNC/SYSREF 系统。图 8-2 展示了包含 SYNC 电路在内的时钟输出块的详细图示。图 8-3 显示了互连,并突出显示了一些用于控制器件以实现 SYNC/SYSREF 目的的重要寄存器。

要复位或同步分频器,必须满足以下条件:

  1. 必须设置 SYNC_EN。这可确保 SYNC 电路正常运行。
  2. 为了提供有效的 SYNC/SYSREF 信号,SYSREF_MUX 和 SYNC_MODE 必须设置为正确的组合。
    • 如果使用的是 SYSREF 块,则必须清除 SYSREF_PD 位。
    • 如果使用的是 SYSREF 脉冲发生器,则必须清除 SYSREF_PLSR_PD 位。
    • 对于每个用于 SYSREF 的 CLKOUTx 或 CLKOUTY,必须清除相应的 SCLKX_Y_PD 位。
  3. 必须清除 DCLKX_Y_DDLY_PD 和 SYSREF_DDLY_PD 位,以便为同步期间使用的数字延迟电路上电,从而在器件时钟分频器和全局 SYSREF 分频器之间产生确定性相位。
  4. 必须清除 SYNC_DISX 位,以允许将 SYNC/SYSREF 信号发送到分频器电路。如果清除了相应的 SYNC_DISX 位,则 SYSREF_MUX 寄存器会选择复位 SYSREF/CLKOUTx 分频器的 SYNC 源。
  5. 可根据需要设置会影响同步操作的其他位,例如 SYNC_1SHOT_EN。
  6. 在同步这些分频器后,可以设置 DCLKX_Y_DDLY_PD 和 SYSREF_DDLY_PD 位以节省电流。如果在上电时清除了这些寄存器的值,可能会破坏输出时钟相位。

表 8-2 显示了 SYSREF_MUX 和 SYNC_MODE 的一些可能组合。

表 8-2 一些可能的 SYNC 配置
名称SYNC_MODESYSREF_MUX其它说明
SYNC 已禁用00CLKin0_DEMUX ≠ 0不会发生同步。
引脚或 SPI SYNC10CLKin0_DEMUX ≠ 0基本 SYNC 功能,SYNC 引脚极性由 SYNC_POL 选择。
要通过 SPI 实现 SYNC,请切换 SYNC_POL 位。
差分输入 SYNCX0 或 1CLKin0_DEMUX = 0差分 CLKin0 现在作为 SYNC 输入运行。
在引脚转换时触发 JESD204B/C 脉冲发生器。22SYSREF_PULSE_CNT 设置脉冲计数在引脚转换时生成 SYSREF_PULSE_CNT 编程脉冲数。SYNC_POL 可用于通过 SPI 引发 SYNC。
在 SPI 编程时触发 JESD204B/C 脉冲发生器。32SYSREF_PULSE_CNT 设置脉冲计数对 SYSREF_PULSE_CNT 寄存器进行编程会开始发送脉冲数。
时钟恢复型 SYNC11SYSREF 可运行,并且已经根据需要配置了相应的 SYSREF 分频器以适应训练帧大小。可为 LM97600 等非 JESD 转换器实现 n 位帧训练模式的精确 SYNC。
外部 SYSREF 请求02SYSREF_REQ_EN = 1
脉冲发生器已上电
当 SYNC 引脚被置为有效时,会发生连续的 SYSREF 脉冲。脉冲的开启和关闭实现同步,以防止 SYSREF 上出现窄脉冲。
连续 SYSREFX3SYSREF_PD = 0
SYSREF_DDLY_PD = 0
SYSREF_PLSR_PD = 1 (1)
连续 SYSREF 信号。
时钟恢复型 SYSREF 分配00SYSREF_DDLY_PD = 1
SYSREF_PLSR_PD = 1
SYSREF_PD = 1。
CLKin0 的扇出重新生成时钟信号后再分配到时钟分配路径。
根据 SYSREF 输出的要求,SCLKX_Y_PD = 0。当 SCLKX_Y_MUX = 1(SYSREF 输出)时,这适用于 SCLKX_Y 上的任何 SYNC 或 SYSREF 输出
注:

SYNC/SYSREF 信号由时钟分配路径重新生成时钟信号,因此时钟分配路径上必须存在有效时钟(来自 VCO 或处于分配模式的 FIN0/FIN1 引脚),SYNC 才能生效。

注:

任何未设置 SYNC_DISX 位或 SYNC_DISSYSREF 位的器件时钟分频器或 SYSREF 分频器将在 SYNC/SYSREF 分配路径为高电平时复位。这对于 SYSREF 分频器尤其重要,如果 SYNC_DISSYSREF = 0,这样就让该分频器可以自行复位!确保根据需要设置 SYNC_DISX/SYNC_DISSYSREF 位。

注:

在对 DCLK_X_Y_DIV 使用 2 分频或 3 分频时,SYNC 程序需要首先对 4 分频进行编程,然后在进行 SYNC 之前对 2 分频或 3 分频进行编程。